minimal surface

{{Short description|Surface that locally minimizes its area}}

{{Distinguish|text= minimal rational surface or minimal algebraic surface}}

Image:Bulle de savon hélicoïde.PNG minimal surface formed by a soap film on a helical frame]]

In mathematics, a minimal surface is a surface that locally minimizes its area. This is equivalent to having zero mean curvature (see definitions below).

The term "minimal surface" is used because these surfaces originally arose as surfaces that minimized total surface area subject to some constraint. Physical models of area-minimizing minimal surfaces can be made by dipping a wire frame into a soap solution, forming a soap film, which is a minimal surface whose boundary is the wire frame. However, the term is used for more general surfaces that may self-intersect or do not have constraints. For a given constraint there may also exist several minimal surfaces with different areas (for example, see minimal surface of revolution): the standard definitions only relate to a local optimum, not a global optimum.

Definitions

File:Saddle Tower Minimal Surfaces.png minimal surface. While any small change of the surface increases its area, there exist other surfaces with the same boundary with a smaller total area.]]

Minimal surfaces can be defined in several equivalent ways in \R^3. The fact that they are equivalent serves to demonstrate how minimal surface theory lies at the crossroads of several mathematical disciplines, especially differential geometry, calculus of variations, potential theory, complex analysis and mathematical physics.{{cite journal

| first1 = William H. III

| last1 = Meeks

| first2 = Joaquín

| last2 = Pérez

| year = 2011

| title = The classical theory of minimal surfaces

| journal = Bull. Amer. Math. Soc.

| volume = 48

| issue = 3

| pages = 325–407

| doi = 10.1090/s0273-0979-2011-01334-9

| mr = 2801776

| doi-access = free

}}

:Local least area definition: A surface M \subset \R^3 is minimal if and only if every point pM has a neighbourhood, bounded by a simple closed curve, which has the least area among all surfaces having the same boundary.

This property is local: there might exist regions in a minimal surface, together with other surfaces of smaller area which have the same boundary. This property establishes a connection with soap films; a soap film deformed to have a wire frame as boundary will minimize area.

:Variational definition: A surface M \subset \R^3 is minimal if and only if it is a critical point of the area functional for all compactly supported variations.

This definition makes minimal surfaces a 2-dimensional analogue to geodesics, which are analogously defined as critical points of the length functional.

File:Minimal surface curvature planes-en.svg

:Mean curvature definition: A surface M \subset \R^3 is minimal if and only if its mean curvature is equal to zero at all points.

A direct implication of this definition is that every point on the surface is a saddle point with equal and opposite principal curvatures. Additionally, this makes minimal surfaces into the static solutions of mean curvature flow. By the Young–Laplace equation, the mean curvature of a soap film is proportional to the difference in pressure between the sides. If the soap film does not enclose a region, then this will make its mean curvature zero. By contrast, a spherical soap bubble encloses a region which has a different pressure from the exterior region, and as such does not have zero mean curvature.

:Differential equation definition: A surface M \subset \R^3 formed by the image of a region X \subset \R^2 under function \mathbf{f} : X \to M , (x, y) \mapsto (x, y, u(x, y)) , where u: X \to \R is a real valued function, is minimal if and only if u satisfies

::(1+u_x^2)u_{yy} - 2u_xu_yu_{xy} + (1+u_y^2)u_{xx}=0

:The partial differential equation in this definition was originally found in 1762 by Lagrange,J. L. Lagrange. Essai d'une nouvelle methode pour determiner les maxima et les minima des formules integrales indefinies. Miscellanea Taurinensia 2, 325(1):173{199, 1760. and Jean Baptiste Meusnier discovered in 1776 that it implied a vanishing mean curvature.J. B. Meusnier. Mémoire sur la courbure des surfaces. Mém. Mathém. Phys. Acad. Sci. Paris, prés. par div. Savans, 10:477–510, 1785. Presented in 1776. This equation gives an asymmetric definition in the sense that the position on the z-axis is determined as a function u of x and y. Not all surfaces are conveniently represented this way. An alternative definition based on the more general representation \mathbf{x} : \R^{2} \to \R^{3}, (u,v) \mapsto (x,y,z) is

:\frac{\partial}{\partial u} \frac{\frac{\partial \mathbf{x}}{\partial v} \boldsymbol{\times} (\frac{\partial \mathbf{x}}{\partial u} \boldsymbol{\times} \frac{\partial \mathbf{x}}{\partial v} )}{\sqrt{(\frac{\partial \mathbf{x}}{\partial u} \boldsymbol{\times} \frac{\partial \mathbf{x}}{\partial v} ) \boldsymbol{\cdot} (\frac{\partial \mathbf{x}}{\partial u} \boldsymbol{\times} \frac{\partial \mathbf{x}}{\partial v} )} } = \frac{\partial}{\partial v} \frac{\frac{\partial \mathbf{x}}{\partial u} \boldsymbol{\times} (\frac{\partial \mathbf{x}}{\partial u} \boldsymbol{\times} \frac{\partial \mathbf{x}}{\partial v} )}{\sqrt{(\frac{\partial \mathbf{x}}{\partial u} \boldsymbol{\times} \frac{\partial \mathbf{x}}{\partial v} ) \boldsymbol{\cdot} (\frac{\partial \mathbf{x}}{\partial u} \boldsymbol{\times} \frac{\partial \mathbf{x}}{\partial v} )} }.

:Energy definition: A conformal immersion X: M \rightarrow \R^3 is minimal if and only if it is a critical point of the Dirichlet energy for all compactly supported variations, or equivalently if any point p \in M has a neighbourhood with least energy relative to its boundary.

This definition ties minimal surfaces to harmonic functions and potential theory.

:Harmonic definition: If X = (x_1, x_2, x_3) : M \rightarrow \R^3 is an isometric immersion of a Riemann surface into 3-space, then X is said to be minimal whenever x_i is a harmonic function on M for each i.

A direct implication of this definition and the maximum principle for harmonic functions is that there are no compact complete minimal surfaces in \R^3.

:Gauss map definition: A surface M \subset \R^3 is minimal if and only if its stereographically projected Gauss map g: M \rightarrow \C \cup {\infty} is meromorphic with respect to the underlying Riemann surface structure, and M is not a piece of a sphere.

This definition uses that the mean curvature is half of the trace of the shape operator, which is linked to the derivatives of the Gauss map. If the projected Gauss map obeys the Cauchy–Riemann equations then either the trace vanishes or every point of M is umbilic, in which case it is a piece of a sphere.

The local least area and variational definitions allow extending minimal surfaces to other Riemannian manifolds than \R^3.See {{ harv | Nishikawa | 2002 }} about variational definition.

History

Minimal surface theory originates with Lagrange who in 1762 considered the variational problem of finding the surface z=z(x,y) of least area stretched across a given closed contour. He derived the Euler–Lagrange equation for the solution

:\frac{d}{dx}\left(\frac{z_x}{\sqrt{1+z_x^2+z_y^2}}\right ) + \frac{d}{dy}\left(\frac{z_y}{\sqrt{1+z_x^2+z_y^2}}\right )=0

He did not succeed in finding any solution beyond the plane. In 1776 Jean Baptiste Marie Meusnier discovered that the helicoid and catenoid satisfy the equation and that the differential expression corresponds to twice the mean curvature of the surface, concluding that surfaces with zero mean curvature are area-minimizing.

By expanding Lagrange's equation to

:\left(1 + z_x^2\right)z_{yy} - 2z_xz_yz_{xy} + \left(1 + z_y^2\right)z_{xx} = 0

Gaspard Monge and Legendre in 1795 derived representation formulas for the solution surfaces. While these were successfully used by Heinrich Scherk in 1830 to derive his surfaces, they were generally regarded as practically unusable. Catalan proved in 1842/43 that the helicoid is the only ruled minimal surface.

Progress had been fairly slow until the middle of the century when the Björling problem was solved using complex methods. The "first golden age" of minimal surfaces began. Schwarz found the solution of the Plateau problem for a regular quadrilateral in 1865 and for a general quadrilateral in 1867 (allowing the construction of his periodic surface families) using complex methods. Weierstrass and Enneper developed more useful representation formulas, firmly linking minimal surfaces to complex analysis and harmonic functions. Other important contributions came from Beltrami, Bonnet, Darboux, Lie, Riemann, Serret and Weingarten.

Between 1925 and 1950 minimal surface theory revived, now mainly aimed at nonparametric minimal surfaces. The complete solution of the Plateau problem by Jesse Douglas and Tibor Radó was a major milestone. Bernstein's problem and Robert Osserman's work on complete minimal surfaces of finite total curvature were also important.

Another revival began in the 1980s. One cause was the discovery in 1982 by Celso Costa of a surface that disproved the conjecture that the plane, the catenoid, and the helicoid are the only complete embedded minimal surfaces in \R^3 of finite topological type. This not only stimulated new work on using the old parametric methods, but also demonstrated the importance of computer graphics to visualise the studied surfaces and numerical methods to solve the "period problem" (when using the conjugate surface method to determine surface patches that can be assembled into a larger symmetric surface, certain parameters need to be numerically matched to produce an embedded surface). Another cause was the verification by H. Karcher that the triply periodic minimal surfaces originally described empirically by Alan Schoen in 1970 actually exist. This has led to a rich menagerie of surface families and methods of deriving new surfaces from old, for example by adding handles or distorting them.

Currently the theory of minimal surfaces has diversified to minimal submanifolds in other ambient geometries, becoming relevant to mathematical physics (e.g. the positive mass conjecture, the Penrose conjecture) and three-manifold geometry (e.g. the Smith conjecture, the Poincaré conjecture, the Thurston Geometrization Conjecture).

Examples

File:Costa's Minimal Surface.png]]

Classical examples of minimal surfaces include:

  • the plane, which is a trivial case
  • catenoids: minimal surfaces made by rotating a catenary once around its directrix
  • helicoids: A surface swept out by a line rotating with uniform velocity around an axis perpendicular to the line and simultaneously moving along the axis with uniform velocity

Surfaces from the 19th century golden age include:

Modern surfaces include:

See also

References

{{Reflist}}

Further reading

Textbooks

  • R. Courant. Dirichlet's Principle, Conformal Mapping, and Minimal Surfaces. Appendix by M. Schiffer. Interscience Publishers, Inc., New York, N.Y., 1950. xiii+330 pp.
  • H. Blaine Lawson, Jr. Lectures on minimal submanifolds. Vol. I. Second edition. Mathematics Lecture Series, 9. Publish or Perish, Inc., Wilmington, Del., 1980. iv+178 pp. {{ISBN|0-914098-18-7}}
  • Robert Osserman. A survey of minimal surfaces. Second edition. Dover Publications, Inc., New York, 1986. vi+207 pp. {{ISBN|0-486-64998-9}}, {{mr|0852409}}
  • Johannes C.C. Nitsche. Lectures on minimal surfaces. Vol. 1. Introduction, fundamentals, geometry and basic boundary value problems. Translated from the German by Jerry M. Feinberg. With a German foreword. Cambridge University Press, Cambridge, 1989. xxvi+563 pp. {{ISBN|0-521-24427-7}}
  • {{ cite book | last = Nishikawa | first = Seiki | year = 2002 | title = Variational problems in geometry | series = Translations of mathematical monographs; Iwanami series in modern mathematics | volume = 205 | isbn = 0821813560 | issn = 0065-9282 | translator-last = Abe | translator-first = Kinetsu | publisher = Providence, R. I. : American Mathematical Society | postscript = , translated from: }}

:* {{ cite book | author = 西川青季 | year = 1998 | title = 幾何学的変分問題 | series = 岩波講座現代数学の基礎 | volume = 28 | publisher = 岩波書店 | location = Tokyo | isbn = 4-00-010642-2 | language = Japanese }}

  • Ulrich Dierkes, Stefan Hildebrandt, and Friedrich Sauvigny. Minimal surfaces. Revised and enlarged second edition. With assistance and contributions by A. Küster and R. Jakob. Grundlehren der Mathematischen Wissenschaften, 339. Springer, Heidelberg, 2010. xvi+688 pp. {{ISBN|978-3-642-11697-1}}, {{doi|10.1007/978-3-642-11698-8}} {{closed access}}, {{mr|2566897}}
  • Tobias Holck Colding and William P. Minicozzi, II. A course in minimal surfaces. Graduate Studies in Mathematics, 121. American Mathematical Society, Providence, RI, 2011. xii+313 pp. {{ISBN|978-0-8218-5323-8}}

Online resources

  • {{cite web

| first1 = Hermann

| last1 = Karcher

| first2 = Konrad

| last2 = Polthier

| url = http://page.mi.fu-berlin.de/polthier/booklet/intro.html

| title= Touching Soap Films - An introduction to minimal surfaces

| year = 1995

| access-date = December 27, 2006 }} (graphical introduction to minimal surfaces and soap films.)

  • {{cite web

| title=Periodic Minimal Surfaces Gallery

| url=http://www-klinowski.ch.cam.ac.uk/pmsgal1.html

| author = Jacek Klinowski

| access-date = February 2, 2009 }} (A collection of minimal surfaces with classical and modern examples)

  • {{cite web

| title=Grape Minimal Surface Library

| url=http://numod.ins.uni-bonn.de/grape/EXAMPLES/AMANDUS/amandus.html

| author = Martin Steffens and Christian Teitzel

| access-date = October 27, 2008 }} (A collection of minimal surfaces)

  • {{cite web

| author = Various

| url = http://www.eg-models.de/models.html

| title= EG-Models

| year = 2000

| access-date = September 28, 2004 }} (Online journal with several published models of minimal surfaces)