Bruno Reversade

{{Short description|American geneticist (born 1978)}}

{{Infobox scientist

| honorific_prefix =

| name = Bruno REVERSADE

| honorific_suffix =

| native_name =

| native_name_lang =

| image =

| image_size =

| image_upright =

| alt =

| caption =

| birth_name =

| birth_date = {{birth year and age|1974}}

| birth_place =

| home_town =

| other_names =

| pronounce =

| citizenship = French / American

| nationality = French

| fields = Mendelian Genetics, Developmental biology, Micropeptides, Hormones

| workplaces = {{Unbulleted list |A*STAR |Koç University|Vrije Universiteit Amsterdam}}

National University of Singapore

KAUST

| patrons =

| education =

| alma_mater = University of California, Los Angeles{{cite news|url=https://www.economist.com/babbage/2011/01/12/out-of-one-many|title=Out of one, many|newspaper=The Economist|author=J.P.|location=Singapore|date=2011-01-12|archiveurl=https://archive.today/20191206212805/https://www.economist.com/babbage/2011/01/12/out-of-one-many|archivedate=2019-12-06|accessdate=2019-12-06}}

| thesis_title =

| thesis_url =

| thesis_year =

| doctoral_advisor = Edward M. De Robertis

| academic_advisors = Davor Solter

| doctoral_students =

| notable_students =

| known_for =

| influences =

| influenced =

| awards = Society-in-Science, Branco Weiss Fellow (2007), A*STAR Investigator (2008), EMBO Young Investigators (2012), National Research Foundation (2019)

| author_abbrev_bot =

| author_abbrev_zoo =

| spouse =

| partner =

| children = 4

| signature =

| signature_alt =

| website = {{URL|http://www.reversade.com/}}

| footnotes =

}}

Bruno Reversade (born 1978) is an American human geneticist and developmental biologist . He is a Director of the Institute of Molecular and Cellular Biology and the Genome Institute of Singapore at A*STAR (Singapore) and holds several faculty positions at other universities. Reversade is known for identifying mutated genes that cause Mendelian diseases, for his research on the genetics of identical twins and for the characterizations of novel hormones.{{cite book|url=https://books.google.com/books?id=L5AxDQAAQBAJ&pg=PA54|title=Twin Mythconceptions: False Beliefs, Fables, and Facts about Twins|page=54|publisher=Academic Press|last=Segal|first=Nancy L.|year=2017|isbn=978-0-12-803994-6|via=Google Books}}{{cite book|url=https://books.google.com/books?id=Gi004MixCHMC&pg=PA16|page=16|title=Epigenomics: From Chromatin Biology to Therapeutics|editor-last=Appasani|editor-first=Krishnarao|publisher=Cambridge University Press|year=2012|isbn=978-1-107-00382-8|via=Google Books}}{{cite news|url=https://www.lemonde.fr/sciences/article/2014/07/08/sur-la-piste-d-un-gene-responsable-de-la-gemellite_4452681_1650684.html|title=Sur la piste d'un gène responsable de la gémellité|trans-title=On the trail of a gene responsible for twinning|language=French|newspaper=Le Monde|last=Rosier|first=Florence|date=8 July 2014|archiveurl=https://web.archive.org/web/20140708232451/https://www.lemonde.fr/sciences/article/2014/07/08/sur-la-piste-d-un-gene-responsable-de-la-gemellite_4452681_1650684.html|archivedate=2014-07-08|accessdate=2019-12-16}}

Early life and education

Bruno Reversade was born in 1974 into a French-American family. He was raised in Grenoble (France) and Washington, D.C. (US). Bruno Reversade studied at the University Joseph Fourier, Pierre and Marie Curie University and UCLA.

Scientific career

Reversade became interested in developmental biology in 1997 when studying at the University of Western Ontario (Canada) under the tutelage of Greg Kelly.{{cite journal|title=Turning point: Bruno Reversade|last=Gewin|first=Virginia|volume=495|issue=7441|pages = 401|date=2013-03-21|journal=Nature|doi=10.1038/nj7441-401a|doi-access=free}}{{cite journal|title=Characterization of a cDNA encoding a novel band 4.1-like protein in zebrafish|last1=Kelly|first1=Gregory M|last2=Reversade|first2=Bruno|journal=Biochemistry and Cell Biology|year=1997|volume=75|issue=5|pages=623–632|doi=10.1139/o97-078|pmid = 9551184}}

He earned his master's degree at the Pasteur Institute (Paris, France), where he studied head development in the mouse embryo.{{cite journal|title=Gene expression profiles in normal and Otx2−/− early gastrulating mouse embryos|journal=Proceedings of the National Academy of Sciences of the United States of America|last1=Zakin|first1=Lise|last2=Reversade|first2=Bruno|last3=Virlon|first3=Bérangère|last4=Rusniok|first4=Christophe|last5=Glaser|first5=Philippe|last6=Elalouf|first6=Jean-Marc|last7=Brûlet|first7=Philippe|date=2000-12-19|volume=97|issue=26|pages=14388–14393|doi=10.1073/pnas.011513398|pmid=11114168|pmc=18928|bibcode=2000PNAS...9714388Z|doi-access=free}} He then moved to the United States to work at the HHMI laboratory of Edward M. De Robertis at the University of California, Los Angeles. There he studied the specification of the dorsal-ventral axis during vertebrate development using Xenopus embryos.{{cite journal|title=Depletion of Bmp2, Bmp4, Bmp7 and Spemann organizer signals induces massive brain formation in Xenopus embryos|journal=Development|last1=Reversade|first1=B.|last2=Kuroda|first2=H.|last3=Lee|first3=H.|last4=Mays|first4=A.|last5=De Robertis|first5=E.M.|date=2005-06-23|volume=132|issue=15|pages=3381–92|pmid=15975940|pmc = 2278118|doi=10.1242/dev.01901}} In 2005, Reversade and De Robertis detailed how multiple extracellular proteins allow embryos that are cut in two to self-regulate consistently.{{cite journal|title=Regulation of ADMP and BMP2/4/7 at Opposite Embryonic Poles Generates a Self-Regulating Morphogenetic Field|last1=Reversade|first1=Bruno|last2=De Robertis|first2=E.M.|journal=Cell|volume=123|issue=6|date=2005-12-16|pages=1147–1160|doi=10.1016/j.cell.2005.08.047|pmid=16360041|pmc=2292129}}{{cite web|url=https://www.hhmi.org/news/researchers-discover-remarkable-developmental-pathway|title=Researchers Discover Remarkable Developmental Pathway|last=Keeley|first=Jim|publisher=Howard Hughes Medical Institute|date=2005-12-16|archiveurl=https://web.archive.org/web/20170925204258/http://www.hhmi.org/news/researchers-discover-remarkable-developmental-pathway|archivedate=2017-09-25|accessdate=2019-12-07}}{{cite book|url=https://books.google.com/books?id=rKCkDwAAQBAJ&pg=PA98|title=Old Questions and Young Approaches to Animal Evolution|page=98|editor-last1=Martín-Durán|editor-first1=José M.|editor-last2=Vellutini|editor-first2=Bruno C.|publisher=Springer Nature|year=2019|issn=2509-6745|isbn=978-3-030-18201-4|via=Google Books}}

In 2006, Reversade earned his PhD from the Pierre and Marie Curie University.{{cite press release|url=https://www.a-star.edu.sg/News-and-Events/News/Press-Releases/ID/9|title=Prestigious A*STAR Investigatorship award attracts outstanding young scientists to carry out independent research at A*STAR Research Institutes|publisher=Agency for Science, Technology and Research|date=2008-02-12|archiveurl=https://web.archive.org/web/20191207201128/https://www.asiaone.com/health/genetic-studies-wins-astar-scientist-place-elite-group|archivedate=2019-12-07|accessdate=2019-12-07}} In 2008, he received the A*STAR investigatorship (Singapore) award and set up his team in 2008 at the Institute of Medical Biology to carry out human embryology and genetic research.{{cite news|url=https://www.asiaone.com/health/genetic-studies-wins-astar-scientist-place-elite-group|title=Genetic studies wins A*Star scientist place in elite group|newspaper=The Straits Times|page=8|last=Zengkung|first=Feng|date=2012-11-20|via=AsiaOne|archiveurl=https://web.archive.org/web/20191207201128/https://www.asiaone.com/health/genetic-studies-wins-astar-scientist-place-elite-group|archivedate=2019-12-07|accessdate=2019-12-07}} In 2015, he became a Director at A*STAR.{{cite web|url=https://www.researchgate.net/profile/Bruno_Reversade|title=Bruno Reversade|website=ResearchGate|archiveurl=https://web.archive.org/web/20191210194627/https://www.researchgate.net/profile/Bruno_Reversade|archivedate=2019-12-10|accessdate=2019-12-10}} Also in 2015, he received AAA Fellowship from the Vrije Universiteit Amsterdam and was appointed Professor of Human Genetics at the Centre for Reproductive Medicine at the university's Academic Medical Center.{{cite web|url=https://www.vu.nl/en/Images/Annual_report_2015_tcm270-793729.pdf|page=56|title=Vrije Universiteit Amsterdam Annual Report 2015|publisher=Vrije Universiteit Amsterdam|year=2015|archiveurl=https://web.archive.org/web/20191207215354/https://www.vu.nl/en/Images/Annual_report_2015_tcm270-793729.pdf|archivedate=2019-12-07|accessdate=2019-12-07}} Since 2016, Reversade is a Distinguished Professor of Human Genetics at Koç University (Turkey).{{cite web|url=https://medicine.ku.edu.tr/kadromuz/akademik-kadro/|title=Akademik Kadro|trans-title=Academic staff|language=Turkish|publisher=Koç University|archiveurl=https://web.archive.org/web/20191210201406/https://medicine.ku.edu.tr/kadromuz/akademik-kadro/|archivedate=2019-12-10|accessdate=2019-12-10}} In 2023, Reversade became a bioscience Professor at KAUST in the Kingdom of Saudi Arabia.

Research areas

=Mendelian genetics=

Reversade's team works on the genetic characterization and clinical description of inherited conditions in humans.{{cite news|url=https://www.straitstimes.com/singapore/health/tracking-mutated-genes-that-wreak-havoc|title=Tracking mutated genes that wreak havoc|last=Cheong|first=Kash|newspaper=The Straits Times|date=2015-09-18|archiveurl=https://web.archive.org/web/20150919002934/https://www.straitstimes.com/singapore/health/tracking-mutated-genes-that-wreak-havoc|archivedate=2015-09-19|accessdate=2019-12-10}}{{cite web|url=https://www.asianscientist.com/2015/10/features/asias-scientific-trailblazers-bruno-reversade/|title=Asia's Scientific Trailblazers: Bruno Reversade|work=Asian Scientist|last=Chng|first=Leonard|date=2015-10-29|archiveurl=https://web.archive.org/web/20151030173025/https://www.asianscientist.com/2015/10/features/asias-scientific-trailblazers-bruno-reversade/|archivedate=2015-10-30|accessdate=2019-12-10}}

They have identified mutations responsible for progeroid syndromes in humans,{{Cite journal|last1=Elouej|first1=Sahar|last2=Harhouri|first2=Karim|last3=Mao|first3=Morgane Le|last4=Baujat|first4=Genevieve|last5=Nampoothiri|first5=Sheela|last6=Kayserili|first6=Hϋlya|last7=Menabawy|first7=Nihal Al|last8=Selim|first8=Laila|last9=Paneque|first9=Arianne Llamos|last10=Kubisch|first10=Christian|last11=Lessel|first11=Davor|date=2020-10-19|title=Author Correction: Loss of MTX2 causes mandibuloacral dysplasia and links mitochondrial dysfunction to altered nuclear morphology|journal=Nature Communications|volume=11|issue=1|pages=5349|doi=10.1038/s41467-020-19290-y|issn=2041-1723|pmc=7572408|pmid=33077719}} NLRP1 inflammasome-related diseases,{{cite journal|title=Human DPP9 represses NLRP1 inflammasome and protects against autoinflammatory diseases via both peptidase activity and FIIND domain binding|display-authors=etal|last1=Zhonga|first1=Franklin L.|last2=Robinson|first2=Kim|last3=Teo|first3=Daniel Eng Thiam|journal=Journal of Biological Chemistry|date=2018-10-05|volume=293|issue=49|pages=18864–18878|doi=10.1074/jbc.RA118.004350|pmid=30291141|pmc=6295727|doi-access=free}}{{Cite medRxiv |last1=Harapas |first1=Cassandra R. |last2=Robinson |first2=Kim S. |last3=Lay |first3=Kenneth |last4=Wong |first4=Jasmine |last5=Traspas |first5=Ricardo Moreno |last6=Nabavizadeh |first6=Nasrin |last7=Raas-Rothschild |first7=Annick |last8=Boisson |first8=Bertrand |last9=Drutman |first9=Scott B. |last10=Laohamonthonkul |first10=Pawat |last11=Bonner |first11=Devon |date=2021-06-09 |title=DPP9 deficiency: an Inflammasomopathy which can be rescued by lowering NLRP1/IL-1 signaling |language=en |medrxiv=10.1101/2021.01.31.21250067v2}} self-healing cancers and numerous diseases causing birth defects

Reversade's group has identified the following genes to be responsible for novel Mendelian diseases:

class="sortable wikitable"
Year

! Gene

! Inheritance

! Mendelian disease

! Phenotype MIM number

2009

| PYCR1

| Recessive

| Cutis laxa, autosomal recessive, type IIB (wrinkly skin syndrome){{cite journal|title=Mutations in PYCR1 cause cutis laxa with progeroid features|display-authors=etal|last1=Reversade|first1=B.|last2=Escande-Beillard|first2=N.|last3=Dimopoulou|first3=A.|journal=Nature Genetics|volume=41|issue=9|pages=1016–1021|date=2009-08-02|doi=10.1038/ng.413|pmid=19648921|s2cid=10221927}}{{cite web|url=https://www.repubblica.it/salute/medicina/2009/09/05/news/scoperta_la_proteina_che_contrasta_l_invecchiamento_precoce_della_pelle-5585170/|title=Scoperta la proteina che contrasta l'invecchiamento precoce della pelle|trans-title=The protein that counteracts premature aging of the skin is discovered|language=Italian|newspaper=la Repubblica|date=2009-09-05|archiveurl=https://web.archive.org/web/20110209150203/http://www.repubblica.it/salute/medicina/2009/09/05/news/scoperta_la_proteina_che_contrasta_l_invecchiamento_precoce_della_pelle-5585170/|archivedate=2011-02-09|accessdate=2019-12-16}}

| 614438

2010

| CHSY1

| Recessive

| Temtamy preaxial brachydactyly syndrome{{cite journal|url= |title=Loss of CHSY1, a secreted FRINGE enzyme, causes syndromic brachydactyly in humans via increased NOTCH signaling|display-authors=etal|last1=Tian|first1=J.|last2=Jing|first2=L.|last3=Shboul|first3=M.|journal=American Journal of Human Genetics|date=2010-12-10|volume=87|issue=6|pages=768–78|doi=10.1016/j.ajhg.2010.11.005|pmid=21129727|pmc=2997365}}

| 605282

2011

| TGFBR1

| Dominant

| Multiple Self-healing Squamous Epithelioma (Fergurson-Smith disease){{cite journal|title=Multiple self-healing squamous epithelioma is caused by a disease-specific spectrum of mutations in TGFBR1|journal=Nature Genetics|volume=43|issue=4|pages=365–9|display-authors=etal|last1=Goudie|first1=D.R.|last2=Merriman|first2=B.|last3=Lee|first3=B.|date=2011-02-27|pmid=21358634|doi=10.1038/ng.780|s2cid=24580576}}

| 132800

2012

| IRX5

| Recessive

| Hamamy syndrome{{cite journal|title=Mutations in IRX5 impair craniofacial development and germ cell migration via SDF1|display-authors=etal|last1=Bonnard|first1=Carine|last2=Strobl|first2=Anna C|last3=Shboul|first3=Mohammad|journal=Nature Genetics|volume=13|issue=44|date=2012-05-13|pages=709–713|doi=10.1038/ng.2259|pmid=22581230|s2cid=5535474|hdl=20.500.12684/3752|hdl-access=free}}{{cite news|url=https://www.nydailynews.com/life-style/health/rare-hamamy-syndrome-offers-genetic-insight-heart-disease-blood-disorders-article-1.1078089|newspaper=New York Daily News|title=Rare Hamamy syndrome offers genetic insight into what causes heart disease, blood disorders|last=Goldwert|first=Lindsay|date=2012-05-15|archiveurl=https://web.archive.org/web/20171012071753/http://www.nydailynews.com/life-style/health/rare-hamamy-syndrome-offers-genetic-insight-heart-disease-blood-disorders-article-1.1078089|archivedate=2017-10-12|accessdate=2019-12-14}}

| 611174

2012

| AAGAB

| Recessive

| Punctate palmoplantar keratoderma, type IA{{cite journal|title=Haploinsufficiency for AAGAB causes clinically heterogeneous forms of punctate palmoplantar keratoderma|display-authors=etal|last1=Pohler|first1=Elizabeth|last2=Mamai|first2=Ons|last3=Hirst|first3=Jennifer|journal=Nature Genetics|date=2012-10-14|volume=44|issue=11|pages=1272–1276|doi=10.1038/ng.2444|pmid=23064416|pmc=3836166}}

| 148600

2014

| KATNB1

| Recessive

| Lissencephaly with Microcephaly 6{{cite journal|url= |title=Katanin p80 Regulates Human Cortical Development by Limiting Centriole and Cilia Number|display-authors=etal|last1=Hu|first1=Wen F.|last2=Pomp|first2=Oz|last3=Ben-Omran|first3=Tawfeg|journal=Neuron|volume=84|issue=6|pages=1240–1257|date=2014-12-17|doi=10.1016/j.neuron.2014.12.017|pmid=25521379|pmc=4485387}}

| 616212

2015

| DCPS

| Recessive

| Al-Raqad syndrome{{cite journal|url= |title=Loss of the scavenger mRNA decapping enzyme DCPS causes syndromic intellectual disability with neuromuscular defects|display-authors=etal|last1=Ng|first1=Calista K.L.|last2=Shboul|first2=Mohammad|last3=Taverniti|first3=Valerio|journal=Human Molecular Genetics|volume=24|issue=11|date=2015-06-01|pages=3163–3171|doi=10.1093/hmg/ddv067|pmid=25712129|pmc=4424953}}

| 616459

2015

| ALDH18A1

| Dominant

| Dominant Cutis laxa type 3{{cite journal|url= |title=Recurrent De Novo Mutations Affecting Residue Arg138 of Pyrroline-5-Carboxylate Synthase Cause a Progeroid Form of Autosomal-Dominant Cutis Laxa|display-authors=etal|last1=Fischer-Zirnsak|first1=Björn|last2=Escande-Beillard|first2=Nathalie|last3=Ganesh|first3=Jaya|last4=Callewaert|first4=Bert|journal=American Journal of Human Genetics|volume=97|issue=3|pages=483–492|date=2015-09-03|doi=10.1016/j.ajhg.2015.08.001|pmid=26320891|pmc=4564990}}

| 616603

2016

| NLRP1

| Dominant

| Multiple self-healing palmoplantar carcinoma{{cite journal|title=Germline NLRP1 Mutations Cause Skin Inflammatory and Cancer Susceptibility Syndromes via Inflammasome Activation|journal=Cell|display-authors=etal|last1=Zhong|first1=Franklin L.|last2=Mamaï|first2=Ons|last3=Sborgi|first3=Lorenzo|last4=Saad|first4=Ali|volume=167|issue=1|pages=187–202.E17|date=2016-09-22|doi=10.1016/j.cell.2016.09.001|pmid=27662089|doi-access=free}}{{cite news|url=https://www.straitstimes.com/singapore/health/spore-team-sheds-light-on-what-causes-skin-cancer|title=Singapore team sheds light on what causes skin cancer|last=Boh|first=Samantha|newspaper=The Straits Times|date=2016-11-02|archiveurl=https://web.archive.org/web/20161102162430/https://www.straitstimes.com/singapore/health/spore-team-sheds-light-on-what-causes-skin-cancer|archivedate=2016-11-02|accessdate=2019-12-15}}

| 615225

2016

|NLRP1

|Recessive

|familial keratosis lichenoides chronica (FKLC)

|615225

2016

| USP9X

| Heterozygous

| X-linked syndromic mental retardation 99{{cite journal|url= |title=De Novo Loss-of-Function Mutations in USP9X Cause a Female-Specific Recognizable Syndrome with Developmental Delay and Congenital Malformations|display-authors=etal|last1=Reijnders|first1=Margot R.F.|last2=Zachariadis|first2=Vasilios|last3=Latour|first3=Brooke|journal=American Journal of Human Genetics|volume=98|issue=2|pages=373–381|date=2016-02-04|doi=10.1016/j.ajhg.2015.12.015|pmid=26833328|pmc=4746365}}

| 300968

2016

| ELMO2

| Recessive

| Primary intraosseous vascular malformation{{cite journal|url= |title=Loss-of-Function Mutations in ELMO2 Cause Intraosseous Vascular Malformation by Impeding RAC1 Signaling|display-authors=etal|last1=Cetinkaya|first1=Arda|last2=Xiong|first2=Jingwei Rachel|last3=Vargel|first3=İbrahim|journal=American Journal of Human Genetics|volume=99|issue=2|pages=299–317|date=2016-08-04|doi=10.1016/j.ajhg.2016.06.008|pmid=27476657|pmc=4974086}}

| 606893

2017

| ENPP1

| Recessive

| Cole disease{{cite journal|url=https://www.jidonline.org/article/S0022-202X(17)32982-2/fulltext|title=ENPP1 Mutation Causes Recessive Cole Disease by Altering Melanogenesis|journal=Journal of Investigative Dermatology|display-authors=etal|last1=Chourabi|first1=Marwa|last2=Liew|first2=Mei Shan|last3=Lim|first3=Shawn|date=2018-01-08|volume=138|issue=2|pages=291–300|doi=10.1016/j.jid.2017.08.045|pmid=28964717|doi-access=free}}

| 615522

2017

| CDK10

| Recessive

| Al Kaissi syndrome{{cite journal|url= |title=CDK10 Mutations in Humans and Mice Cause Severe Growth Retardation, Spine Malformations, and Developmental Delays|display-authors=etal|last1=Windpassinger|first1=Christian|last2=Piard|first2=Juliette|last3=Bonnard|first3=Carine|journal=American Journal of Human Genetics|volume=101|issue=3|pages=391–403|date=2017-09-07|doi=10.1016/j.ajhg.2017.08.003|pmid=28886341|pmc=5591019}}

| 617694

2017

| LGI4

| Recessive

| Neurogenic Arthrogryposis multiplex congenita with myelin defect{{cite journal|url= |title=Loss-of-Function Mutations in LGI4, a Secreted Ligand Involved in Schwann Cell Myelination, Are Responsible for Arthrogryposis Multiplex Congenita|display-authors=etal|last1=Xue|first1=Shifeng|last2=Maluenda|first2=Jérôme|last3=Marguet|first3=Florent|journal=American Journal of Human Genetics|volume=100|issue=4|pages=659–665|date=2017-04-06|doi=10.1016/j.ajhg.2017.02.006|pmid=28318499|pmc=5384038}}

| 617468

2017

| KIAA1109

| Recessive

| Alkuraya-Kucinskas syndrome{{cite journal|url= |title=KIAA1109 Variants Are Associated with a Severe Disorder of Brain Development and Arthrogryposis|display-authors=etal|last1=Gueneau|first1=Lucie|last2=Fish|first2=Richard J.|last3=Shamseldin|first3=Hanan E.|journal=American Journal of Human Genetics|volume=102|issue=1|pages=116–132|date=2018-01-04|doi=10.1016/j.ajhg.2017.12.002|pmid=29290337|pmc=5777449}}

| 617822

2017

| SMCHD1

| Dominant

| Bosma arhinia microphthalmia syndrome{{cite journal|title=De novo mutations in SMCHD1 cause Bosma arhinia microphthalmia syndrome and abrogate nasal development|display-authors=etal|last1=Gordon|first1=Christopher T|last2=Xue|first2=Shifeng|last3=Yigit|first3=Gökhan|journal=Nature Genetics|volume=49|issue=2|pages=249–255|date=2017-01-09|doi=10.1038/ng.3765|pmid=28067911|s2cid=205353193|url=https://hal.archives-ouvertes.fr/hal-01617529/file/ng.3765.pdf}}

| 603457

2018

| CAMK2A

| Recessive

| Mental retardation, autosomal recessive 63{{cite journal|title=A homozygous loss-of-function CAMK2A mutation causes growth delay, frequent seizures and severe intellectual disability|journal=eLife|volume=7|display-authors=etal|last1=Chia|first1=Poh Hui|last2=Zhong|first2= Franklin Lei|last3=Niwa|first3=Shinsuke|date=2018-05-22|doi=10.7554/eLife.32451|pmid=29784083|pmc=5963920 |doi-access=free }}{{cite news|url=https://www.consumeraffairs.com/news/researchers-identify-a-new-neurodevelopmental-disease-052318.html|title=Researchers identify a new neurodevelopmental disease|last=Maynard|first=Christopher|website=ConsumerAffairs|date=2018-05-23|archiveurl=https://web.archive.org/web/20180524002036/https://www.consumeraffairs.com/news/researchers-identify-a-new-neurodevelopmental-disease-052318.html|archivedate=2018-05-24|accessdate=2019-12-15}}

| 618095

2018

| RSPO2

| Recessive

| Tetraamelia syndrome with pulmonary agenesis{{cite journal|title=RSPO2 inhibition of RNF43 and ZNRF3 governs limb development independently of LGR4/5/6|journal=Nature|display-authors=etal|last1=Szenker-Ravi|first1=Emmanuelle|last2=Altunoglu|first2=Umut|last3=Leushacke|first3=Marc|volume=557|issue=7706|pages=564–569|date=2018-05-16|doi=10.1038/s41586-018-0118-y|pmid=29769720|bibcode=2018Natur.557..564S|s2cid=21712936}}{{cite news|url=https://www.nrc.nl/nieuws/2018/05/17/mutatie-in-signaal-gen-verstoort-aanleg-ledematen-a1603338|title=Geboren zonder armen en benen – nu weten we hoe dat komt|trans-title=Born without arms and legs - now we know why|language=Dutch|newspaper=NRC Handelsblad|last=Voormolen|first=Sander|date=2018-05-17|archiveurl=https://web.archive.org/web/20191215185518/https://www.nrc.nl/nieuws/2018/05/17/mutatie-in-signaal-gen-verstoort-aanleg-ledematen-a1603338|archivedate=2019-12-15|accessdate=2019-12-15}}{{cite web|url=http://www.hurriyet.com.tr/gundem/kopan-kol-ve-bacak-yeniden-cikabilir-turk-bilim-kadininin-buyuk-basarisi-40864900|title=Kopan kol ve bacak yeniden çıkabilir... Türk bilim kadınının büyük başarısı|trans-title=The broken arm and leg can come out again ... The great success of the Turkish scientist|language=Turkish|newspaper=Hürriyet|last=Ersan|first=Mesude|date=2018-06-11|archiveurl=https://web.archive.org/web/20181112093107/http://www.hurriyet.com.tr/gundem/kopan-kol-ve-bacak-yeniden-cikabilir-turk-bilim-kadininin-buyuk-basarisi-40864900|archivedate=2018-11-12|accessdate=2019-12-15}}

| 618021

2019

| TBX4

| Recessive

| PAPPA syndrome{{cite journal|url= |title=Homozygous Null TBX4 Mutations Lead to Posterior Amelia with Pelvic and Pulmonary Hypoplasia|display-authors=etal|last1=Kariminejad|first1=Ariana|last2=Szenker-Ravi|first2=Emmanuelle|last3=Lekszas|first3=Caroline|journal=American Journal of Human Genetics|volume=105|issue=6|pages=1294–1301|date=2019-12-05|doi=10.1016/j.ajhg.2019.10.013|pmid=31761294|pmc=6904794}}

| 601719

2019

|NLRP1

|Recessive

|Congenital juvenile recurrent respiratory papillomatosis (JRRP){{Cite journal |last1=Drutman |first1=Scott B. |last2=Haerynck |first2=Filomeen |last3=Zhong |first3=Franklin L. |last4=Hum |first4=David |last5=Hernandez |first5=Nicholas J. |last6=Belkaya |first6=Serkan |last7=Rapaport |first7=Franck |last8=de Jong |first8=Sarah Jill |last9=Creytens |first9=David |last10=Tavernier |first10=Simon J. |last11=Bonte |first11=Katrien |last12=De Schepper |first12=Sofie |last13=van der Werff Ten Bosch |first13=Jutte |last14=Lorenzo-Diaz |first14=Lazaro |last15=Wullaert |first15=Andy |date=2019-09-17 |title=Homozygous NLRP1 gain-of-function mutation in siblings with a syndromic form of recurrent respiratory papillomatosis |journal=Proceedings of the National Academy of Sciences of the United States of America |volume=116 |issue=38 |pages=19055–19063 |doi=10.1073/pnas.1906184116 |issn=1091-6490 |pmc=6754618 |pmid=31484767|bibcode=2019PNAS..11619055D |doi-access=free }}

|618803

2020

| UGDH

| Recessive

| Jamuar Syndrome{{cite journal|title=Loss-of-function mutations in UDP-Glucose 6-Dehydrogenase cause recessive developmental epileptic encephalopathy|display-authors=etal|last1=Hengel|first1=Holger|last2=Bosso-Lefèvre|first2=Célia|last3=Grady|first3=George|last4=Szenker-Ravi|first4=Emmanuelle|last5=Li|first5=Hankun|last6=Pierce|first6=Sarah|journal=Nature Communications|volume=11|issue=1|pages=595|date=January 30, 2020|doi=10.1038/s41467-020-14360-7|pmid=32001716|pmc=6992768|bibcode=2020NatCo..11..595H}}

| 603370

2020

|MTX2

|Recessive

|Mandibuloacral dysplasia progeroid syndrome

|619127

2020

|NUAK2

|Recessive

|Anencephaly 2{{Cite journal|last1=Bonnard|first1=Carine|last2=Navaratnam|first2=Naveenan|last3=Ghosh|first3=Kakaly|last4=Chan|first4=Puck Wee|last5=Tan|first5=Thong Teck|last6=Pomp|first6=Oz|last7=Ng|first7=Alvin Yu Jin|last8=Tohari|first8=Sumanty|last9=Changede|first9=Rishita|last10=Carling|first10=David|last11=Venkatesh|first11=Byrappa|date=2020-12-07|title=A loss-of-function NUAK2 mutation in humans causes anencephaly due to impaired Hippo-YAP signaling|journal=The Journal of Experimental Medicine|volume=217|issue=12|doi=10.1084/jem.20191561|issn=1540-9538|pmc=7953732|pmid=32845958}}

|619452

2021

|C2orf69

|Recessive

|Elbracht-Işikay Syndrome{{Cite journal|last1=Wong|first1=Hui Hui|last2=Seet|first2=Sze Hwee|last3=Maier|first3=Michael|last4=Gurel|first4=Ayse|last5=Traspas|first5=Ricardo Moreno|last6=Lee|first6=Cheryl|last7=Zhang|first7=Shan|last8=Talim|first8=Beril|last9=Loh|first9=Abigail Y. T.|last10=Chia|first10=Crystal Y.|last11=Teoh|first11=Tze Shin|date=2021-05-21|title=Loss of C2orf69 defines a fatal autoinflammatory syndrome in humans and zebrafish that evokes a glycogen storage-associated mitochondriopathy|journal=American Journal of Human Genetics|volume=108|issue=7|pages=1301–1317|doi=10.1016/j.ajhg.2021.05.003|issn=1537-6605|pmid=34038740|pmc=8322802}}

|619423

2021

|WLS

|Recessive

|Zaki Syndrome{{Cite journal|last1=Chai|first1=Guoliang|last2=Szenker-Ravi|first2=Emmanuelle|last3=Chung|first3=Changuk|last4=Li|first4=Zhen|last5=Wang|first5=Lu|last6=Khatoo|first6=Muznah|last7=Marshall|first7=Trevor|last8=Jiang|first8=Nan|last9=Yang|first9=Xiaoxu|last10=McEvoy-Venneri|first10=Jennifer|last11=Stanley|first11=Valentina|date=2021-09-30|title=A Human Pleiotropic Multiorgan Condition Caused by Deficient Wnt Secretion|journal=The New England Journal of Medicine|volume=385|issue=14|pages=1292–1301|doi=10.1056/NEJMoa2033911|issn=1533-4406|pmid=34587386|pmc=9017221 |s2cid=238230084}}

|619648

2021

|CIROP

|Recessive

|Visceral heterotaxy-12 (HTX12){{Cite web |title=Entry - #619702 - HETEROTAXY, VISCERAL, 12, AUTOSOMAL; HTX12 - OMIM |url=https://www.omim.org/entry/619702 |access-date=2023-09-16 |website=www.omim.org |language=en-us}}{{Cite journal |last1=Szenker-Ravi |first1=Emmanuelle |last2=Ott |first2=Tim |last3=Khatoo |first3=Muznah |last4=Moreau de Bellaing |first4=Anne |last5=Goh |first5=Wei Xuan |last6=Chong |first6=Yan Ling |last7=Beckers |first7=Anja |last8=Kannesan |first8=Darshini |last9=Louvel |first9=Guillaume |last10=Anujan |first10=Priyanka |last11=Ravi |first11=Vydianathan |last12=Bonnard |first12=Carine |last13=Moutton |first13=Sébastien |last14=Schoen |first14=Patric |last15=Fradin |first15=Mélanie |date=January 2022 |title=Discovery of a genetic module essential for assigning left–right asymmetry in humans and ancestral vertebrates |url=https://www.nature.com/articles/s41588-021-00970-4 |journal=Nature Genetics |language=en |volume=54 |issue=1 |pages=62–72 |doi=10.1038/s41588-021-00970-4 |pmid=34903892 |s2cid=245171772 |issn=1546-1718}}

|619702

2022

|DPP9

|Recessive

|Hatipoğlu syndrome{{Cite journal |last1=Harapas |first1=Cassandra R. |last2=Robinson |first2=Kim S. |last3=Lay |first3=Kenneth |last4=Wong |first4=Jasmine |last5=Moreno Traspas |first5=Ricardo |last6=Nabavizadeh |first6=Nasrin |last7=Rass-Rothschild |first7=Annick |last8=Boisson |first8=Bertrand |last9=Drutman |first9=Scott B. |last10=Laohamonthonkul |first10=Pawat |last11=Bonner |first11=Devon |last12=Xiong |first12=Jingwei Rachel |last13=Gorrell |first13=Mark D. |last14=Davidson |first14=Sophia |last15=Yu |first15=Chien-Hsiung |date=2022-09-16 |title=DPP9 deficiency: An inflammasomopathy that can be rescued by lowering NLRP1/IL-1 signaling |journal=Science Immunology |volume=7 |issue=75 |pages=eabi4611 |doi=10.1126/sciimmunol.abi4611 |issn=2470-9468 |pmc=9844213 |pmid=36112693}}

|608258

2022

|FOCAD

|Recessive

|Severe Liver congenital disease{{Cite journal |last1=Moreno Traspas |first1=Ricardo |last2=Teoh |first2=Tze Shin |last3=Wong |first3=Pui-Mun |last4=Maier |first4=Michael |last5=Chia |first5=Crystal Y. |last6=Lay |first6=Kenneth |last7=Ali |first7=Nur Ain |last8=Larson |first8=Austin |last9=Al Mutairi |first9=Fuad |last10=Al-Sannaa |first10=Nouriya Abbas |last11=Faqeih |first11=Eissa Ali |last12=Alfadhel |first12=Majid |last13=Cheema |first13=Huma Arshad |last14=Dupont |first14=Juliette |last15=Bézieau |first15=Stéphane |date=August 2022 |title=Loss of FOCAD, operating via the SKI messenger RNA surveillance pathway, causes a pediatric syndrome with liver cirrhosis |url=https://pubmed.ncbi.nlm.nih.gov/35864190 |journal=Nature Genetics |volume=54 |issue=8 |pages=1214–1226 |doi=10.1038/s41588-022-01120-0 |issn=1546-1718 |pmid=35864190|hdl=10754/679809 |s2cid=250954453 |hdl-access=free |pmc=7615854 }}

|619991

2022

|TMEM147

|Recessive

|Neurodevelopmental disorder with facial dysmorphism & absent language{{Cite journal |last1=Thomas |first1=Quentin |last2=Motta |first2=Marialetizia |last3=Gautier |first3=Thierry |last4=Zaki |first4=Maha S. |last5=Ciolfi |first5=Andrea |last6=Paccaud |first6=Julien |last7=Girodon |first7=François |last8=Boespflug-Tanguy |first8=Odile |last9=Besnard |first9=Thomas |last10=Kerkhof |first10=Jennifer |last11=McConkey |first11=Haley |last12=Masson |first12=Aymeric |last13=Denommé-Pichon |first13=Anne-Sophie |last14=Cogné |first14=Benjamin |last15=Trochu |first15=Eva |date=2022-10-06 |title=Bi-allelic loss-of-function variants in TMEM147 cause moderate to profound intellectual disability with facial dysmorphism and pseudo-Pelger-Huët anomaly |journal=American Journal of Human Genetics |volume=109 |issue=10 |pages=1909–1922 |doi=10.1016/j.ajhg.2022.08.008 |issn=1537-6605 |pmc=9606387 |pmid=36044892}}

|620075

2023

|TAPT1

|Recessive

|Lethal Osteochondrodysplasia{{Cite journal |last1=Nabavizadeh |first1=Nasrinsadat |last2=Bressin |first2=Annkatrin |last3=Shboul |first3=Mohammad |last4=Moreno Traspas |first4=Ricardo |last5=Chia |first5=Poh Hui |last6=Bonnard |first6=Carine |last7=Szenker-Ravi |first7=Emmanuelle |last8=Sarıbaş |first8=Burak |last9=Beillard |first9=Emmanuel |last10=Altunoglu |first10=Umut |last11=Hojati |first11=Zohreh |last12=Drutman |first12=Scott |last13=Freier |first13=Susanne |last14=El-Khateeb |first14=Mohammad |last15=Fathallah |first15=Rajaa |date=2023-02-08 |title=A progeroid syndrome caused by a deep intronic variant in TAPT1 is revealed by RNA/SI-NET sequencing |journal=EMBO Molecular Medicine |volume=15 |issue=2 |pages=e16478 |doi=10.15252/emmm.202216478 |issn=1757-4684 |pmc=9906387 |pmid=36652330}}

|616897

2023

|DRG1

|Recessive

|Neurodevelopmental disorder{{Cite medRxiv |last1=Westrip |first1=Christian A. E. |last2=Paul |first2=Franziska |last3=Al-Murshedi |first3=Fathiya |last4=Qaitoon |first4=Hashim |last5=Cham |first5=Breana |last6=Fletcher |first6=Sally C. |last7=Hendrix |first7=Eline |last8=Boora |first8=Uncaar |last9=Ng |first9=Alvin Yu Jin |last10=Bonnard |first10=Carine |last11=Najafi |first11=Maryam |last12=Alawbathani |first12=Salem |last13=Lambert |first13=Imelda |last14=Fox |first14=Gabriel |last15=Venkatesh |first15=Byrappa |date=2022-09-23 |title=Inactivation of DRG1, encoding a translation factor GTPase, causes a Recessive Neurodevelopmental Disorder |language=en |medrxiv=10.1101/2022.09.20.22279914v1}}

|603952

2023

|RAF1

|Recessive

|Progeroid disease {{Cite medRxiv |last1=Wong |first1=Samantha |last2=Tan |first2=Yu Xuan |last3=Tan |first3=Kiat Yi |last4=Loh |first4=Abigail |last5=Aziz |first5=Zainab |last6=Özkan |first6=Engin |last7=Kayserili |first7=Hülya |last8=Escande-Beillard |first8=Nathalie |last9=Reversade |first9=Bruno |date=2022-03-04 |title=A Progeroid Syndrome Caused by RAF1 deficiency Underscores the importance of RTK signaling for Human Development |language=en |medrxiv=10.1101/2022.02.20.22271260}}

|164760

=Developmental biology and Twinning=

Reversade's investigations in developmental biology have relied on various animal model organisms (C. elegans, Drosophila, zebrafish, Xenopus and transgenic mice) and

covered such embryonic processes as neural induction, limb development, and various human diseases causing birth defects.

In 2005, during his Ph.D. thesis in the laboratory of Edward De Robertis, the scientists published two discoveries,{{cite journal|url= |title=Embryonic Dorsal-Ventral Signaling: Secreted Frizzled-Related Proteins as Inhibitors of Tolloid Proteinases|journal=Cell|last1=Lee|first1=Hojoon X.|last2=Ambrosio|first2=Andrea L.|last3=Reversade|first3=Bruno|last4=De Robertis|first4=E.M.|volume=124|issue=1|pages=147–159|date=2006-01-13|doi=10.1016/j.cell.2005.12.018|pmid=16413488|pmc=2486255}} pertaining to the self-regulation of an embryonic morphogenetic field mediated by the extracellular Chordin/BMP/Sizzled pathway. This helped provide a molecular framework for how embryos split in two halves can develop into perfect, albeit smaller, identical twinned embryos.{{cite journal|title=Bmp Signaling: Turning a Half into a Whole|journal=Cell|last1=Kimelman|first1=David|last2=Pyati|first2=Ujwal J.|volume=123|issue=6|pages=982–984|date=2005-12-16|doi=10.1016/j.cell.2005.11.028|pmid=16360027|s2cid=14376376|doi-access=free}}

Reversade also researches the genetics of dizygotic and monozygotic twinning in humans.{{cite journal|url= |title=Identification of Common Genetic Variants Influencing Spontaneous Dizygotic Twinning and Female Fertility|display-authors=etal|last1=Mbarek|first1=Hamdi|last2=Steinberg|first2=Stacy|last3=Nyholt|first3=Dale R.|journal=American Journal of Human Genetics|volume=98|issue=5|pages=898–908|date=2016-05-05|doi=10.1016/j.ajhg.2016.03.008|pmid=27132594|pmc=4863559}} He has been searching for genes responsible for monozygotic (MZ) twinning from rare population isolates.{{cite journal|title=Developmental biology: Two by two|last=Cyranoski|first=David|journal=Nature|volume=458|issue=7240|pages=826–829|date=2009-04-15|doi=10.1038/458826a|pmid=19370006|doi-access=free}}

In 2021, together with the VU Amsterdam, his group revealed that MZ twins harbor an epigenetic signature in their somatic tissue even decades after their birth.{{Cite journal|last1=van Dongen|first1=Jenny|last2=Gordon|first2=Scott D.|last3=McRae|first3=Allan F.|last4=Odintsova|first4=Veronika V.|last5=Mbarek|first5=Hamdi|last6=Breeze|first6=Charles E.|last7=Sugden|first7=Karen|last8=Lundgren|first8=Sara|last9=Castillo-Fernandez|first9=Juan E.|last10=Hannon|first10=Eilis|last11=Moffitt|first11=Terrie E.|date=2021-09-28|title=Identical twins carry a persistent epigenetic signature of early genome programming|journal=Nature Communications|volume=12|issue=1|pages=5618|doi=10.1038/s41467-021-25583-7|issn=2041-1723|pmid=34584077|pmc=8479069|bibcode=2021NatCo..12.5618V}} This stable DNA mark could be employed to retrospectively assess if a person is a MZ twin even if his/her co-twin vanished in utero.{{Cite news|title=NewScientist|work=DNA markers reveal if you shared a womb with twin that didn't survive|url=https://www.newscientist.com/article/2291665-dna-markers-reveal-if-you-shared-a-womb-with-twin-that-didnt-survive/#ixzz77q0gWkNf}}

=Hormones and Micropeptides=

Reversade's research has also pioneered the annotation of novel micropeptides.{{cite journal|last1=Chng|first1=Serene C.|last2=Ho|first2=Lena|last3=Tian|first3=Jing|last4=Reversade|first4=Bruno|date=2013-12-23|title=ELABELA: a hormone essential for heart development signals via the apelin receptor|journal=Developmental Cell|volume=27|issue=6|pages=672–680|doi=10.1016/j.devcel.2013.11.002|pmid=24316148|doi-access=free}}

  • ELABELA In 2013, he discovered and patented a novel hormone named Elabela (ELA).{{cite patent|country=US|number=9309314|pubdate=2016-04-12|title=Polypeptides, nucleic acids and uses thereof|assign1=A*STAR|inventor1-last=Reversade|inventor1-first=Bruno}} This secreted circulating peptide works as an endogenous ligand for the Apelin receptor (a G protein-coupled receptor).{{cite journal|last1=Murza|first1=Alexandre|last2=Sainsily|first2=Xavier|last3=Coquerel|first3=David|display-authors=etal|date=2016-03-17|title=Discovery and Structure–Activity Relationship of a Bioactive Fragment of ELABELA that Modulates Vascular and Cardiac Functions|journal=Journal of Medicinal Chemistry|volume=59|issue=7|pages=2962–2972|doi=10.1021/acs.jmedchem.5b01549|pmid=26986036}}{{cite journal|last1=Read|first1=Cai|last2=Nyimanu|first2=Duuamene|last3=Williams|first3=Thomas L.|display-authors=etal|date=October 2019|title=International Union of Basic and Clinical Pharmacology. CVII. Structure and Pharmacology of the Apelin Receptor with a Recommendation that Elabela/Toddler Is a Second Endogenous Peptide Ligand|journal=Pharmacological Reviews|volume=71|issue=4|pages=467–502|doi=10.1124/pr.119.017533|pmc=6731456|pmid=31492821}} The genetic inactivation of ELA leads to cardiovascular defects,{{cite journal|last1=Helker|first1=Christian SM|last2=Schuermann|first2=Annika|last3=Pollmann|first3=Cathrin|last4=Chng|first4=Serene C|last5=Kiefer|first5=Friedemann|last6=Reversade|first6=Bruno|last7=Herzog|first7=Wiebke|date=2015-05-27|title=The hormonal peptide Elabela guides angioblasts to the midline during vasculogenesis|journal=eLife|volume=27|issue=4|doi=10.7554/eLife.06726|pmc=4468421|pmid=26017639 |doi-access=free }}{{cite journal|last1=Sharma|first1=Bikram|last2=Ho|first2=Lena|last3=Ford|first3=Gretchen|display-authors=etal|date=2017-09-25|title=Alternative Progenitor Cells Compensate to Rebuild the Coronary Vasculature in Elabela- and Apj-Deficient Hearts|url=|journal=Developmental Cell|volume=42|issue=6|pages=655–666.E3|doi=10.1016/j.devcel.2017.08.008|pmc=5895086|pmid=28890073}} predisposes to preeclampsia{{cite journal|last1=Ho|first1=Lena|last2=van Dijk|first2=Marie|last3=Chye|first3=Sam Tan Jian|last4=Messerschmidt|first4=Daniel M.|display-authors=etal|date=2017-08-18|title=ELABELA deficiency promotes preeclampsia and cardiovascular malformations in mice|journal=Science|volume=357|issue=6352|pages=707–713|bibcode=2017Sci...357..707H|doi=10.1126/science.aam6607|pmid=28663440|doi-access=free}}{{cite journal|last1=Hassan|first1=Sonia S|last2=Gomez-Lopez|first2=Nardhy|date=2019-07-06|title=Reducing maternal mortality: can elabela help in this fight?|url=https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(19)30543-4/fulltext|journal=The Lancet|volume=394|issue=10192|pages=8–9|doi=10.1016/S0140-6736(19)30543-4|pmid=31282362|s2cid=195829649|url-access=subscription}}{{cite web|last=Williams|first=Ruth|date=2017-06-29|title=Anti-Preeclampsia Hormone Discovered|url=https://www.the-scientist.com/daily-news/anti-preeclampsia-hormone-discovered-31305|website=The Scientist|archiveurl=https://web.archive.org/web/20191214174225/https://www.the-scientist.com/daily-news/anti-preeclampsia-hormone-discovered-31305|archivedate=2019-12-14|accessdate=2019-12-14}} and is needed for the self-renewal of human embryonic stem cells.{{cite journal|last1=Ho|first1=Lena|last2=Tan|first2=Shawn Y.X.|last3=Wee|first3=Sheena|display-authors=etal|date=2015-10-01|title=ELABELA Is an Endogenous Growth Factor that Sustains hESC Self-Renewal via the PI3K/AKT Pathway|journal=Cell Stem Cell|volume=17|issue=4|pages=435–447|doi=10.1016/j.stem.2015.08.010|pmid=26387754|doi-access=free}} Analogues of Elabela have entered clinical trials by Amgen.{{Cite journal|last1=Ason|first1=Brandon|last2=Chen|first2=Yinhong|last3=Guo|first3=Qi|last4=Hoagland|first4=Kimberly M.|last5=Chui|first5=Ray W.|last6=Fielden|first6=Mark|last7=Sutherland|first7=Weston|last8=Chen|first8=Rhonda|last9=Zhang|first9=Ying|last10=Mihardja|first10=Shirley|last11=Ma|first11=Xiaochuan|date=2020-04-23|title=Cardiovascular response to small-molecule APJ activation|journal=JCI Insight|volume=5|issue=8|doi=10.1172/jci.insight.132898|issn=2379-3708|pmc=7205427|pmid=32208384}}
  • BRAWNIN In 2020, he participated in the characterization of C12orf73,{{cite web|title=C12orf73 chromosome 12 open reading frame 73 [Homo sapiens (human)] - Gene - NCBI|url=https://www.ncbi.nlm.nih.gov/gene/728568|website=www.ncbi.nlm.nih.gov}} a protein-coding gene responsible for the making of a 71 amino-acid peptide called BRAWNIN. This small peptide is essential for respiratory chain complex III (CIII) assembly in human cells and zebrafish.{{Cite journal|last1=Zhang|first1=Shan|last2=Reljić|first2=Boris|last3=Liang|first3=Chao|last4=Kerouanton|first4=Baptiste|last5=Francisco|first5=Joel Celio|last6=Peh|first6=Jih Hou|last7=Mary|first7=Camille|last8=Jagannathan|first8=Narendra Suhas|last9=Olexiouk|first9=Volodimir|last10=Tang|first10=Claire|last11=Fidelito|first11=Gio|date=2020-03-11|title=Mitochondrial peptide BRAWNIN is essential for vertebrate respiratory complex III assembly|journal=Nature Communications|volume=11|issue=1|pages=1312|doi=10.1038/s41467-020-14999-2|issn=2041-1723|pmc=7066179|pmid=32161263|bibcode=2020NatCo..11.1312Z}}
  • C2orf69 In 2021, together with I. Kurth and colleagues,{{Cite journal|last1=Lausberg|first1=Eva|last2=Gießelmann|first2=Sebastian|last3=Dewulf|first3=Joseph P.|last4=Wiame|first4=Elsa|last5=Holz|first5=Anja|last6=Salvarinova|first6=Ramona|last7=van Karnebeek|first7=Clara D.|last8=Klemm|first8=Patricia|last9=Ohl|first9=Kim|last10=Mull|first10=Michael|last11=Braunschweig|first11=Till|date=2021-06-15|title=C2orf69 mutations disrupt mitochondrial function and cause a multisystem human disorder with recurring autoinflammation|journal=The Journal of Clinical Investigation|volume=131|issue=12|doi=10.1172/JCI143078|issn=1558-8238|pmc=8203463|pmid=33945503}} his team identified a fatal syndrome caused by the homozygous inactivation of C2orf69. This gene codes for a 385 amino-acid peptide which can be secreted or associated with mitochondria. C2ORF69 possesses homology to esterase/lipase enzymes.

Awards and recognition

  • Society-in-Science Branco Weiss Fellowship (2007), ETH Zurich;{{cite web|url=https://www.ethlife.ethz.ch/archive_articles/090223_branco_weiss_stipendium/|title=5 Jahre Stipendium "Society in Science"|trans-title=5 years of fellowship "Society in Science":Rich Harvest|language=German|date=2009-02-23|publisher=ETH Zurich|archiveurl=https://web.archive.org/web/20191206215240/https://www.ethlife.ethz.ch/archive_articles/090223_branco_weiss_stipendium/|archivedate=2019-12-06|accessdate=2019-12-06}}
  • Inaugural A*STAR Investigatorship award (2008), Agency for Science, Technology and Research;
  • EMBO Young Investigator award (2012), European Molecular Biology Organization;{{cite press release|url=https://www.embo.org/news/press-releases/2012/22-young-group-leaders-recognized-as-embo-young-investigators|title=22 young group leaders recognized as EMBO Young Investigators|location=Heidelberg|publisher=European Molecular Biology Organization|date=2012-11-14|archiveurl=https://web.archive.org/web/20181029191542/http://www.embo.org/news/press-releases/2012/22-young-group-leaders-recognized-as-embo-young-investigators|archivedate=2018-10-29|accessdate=2019-12-06}}
  • AAA Fellow (2015), Vrije Universiteit Amsterdam;
  • Senior NRF Investigator (2018), National Research Foundation, Government of Singapore.{{cite web|url=https://www.nrf.gov.sg/docs/default-source/default-document-library/nrf-investigators-portfolio_updated-15-nov-2018.pdf|title=Awarded NRF Investigators|publisher=Government of Singapore|year=2018|archiveurl=https://web.archive.org/web/20191207220341/https://www.nrf.gov.sg/docs/default-source/default-document-library/nrf-investigators-portfolio_updated-15-nov-2018.pdf|archivedate=2019-12-07|accessdate=2019-12-07}}

References

{{reflist}}