Burr distribution

{{Short description|Probability distribution used to model household income}}

{{Probability distribution |

name =Burr Type XII|

type =density|

pdf_image =325px|

cdf_image =325px|

parameters =c > 0\!
k > 0\!|

support =x > 0\!|

pdf =ck\frac{x^{c-1}}{(1+x^c)^{k+1}}\!|

cdf =1-\left(1+x^c\right)^{-k}|

quantile =\lambda \left (\frac{1}{(1-U)^{\frac{1}{k}}}-1 \right )^\frac{1}{c}|

mean =\mu_1=k\operatorname{\Beta}(k-1/c,\, 1+1/c) where Β() is the beta function|

median =\left(2^{\frac{1}{k}}-1\right)^\frac{1}{c}|

mode =\left(\frac{c-1}{kc+1}\right)^\frac{1}{c}|

variance =-\mu_1^2+\mu_2|

skewness =\frac{ 2\mu _{1}^{3}-3\mu _{1}\mu _{2}+\mu _{3}}{\left( -\mu _{1}^{2}+\mu _{2}\right)^{3/2}}|

kurtosis =\frac{-3\mu _{1}^{4}+6\mu _{1}^{2}\mu _{2}-4\mu _{1}\mu _{3}+\mu _{4}}{\left( -\mu _{1}^{2}+\mu _{2}\right)^{2}}-3 where moments ([http://www.causascientia.org/math_stat/Dists/Compendium.pdf see]) \mu_r =k\operatorname{\Beta}\left(\frac{ck-r}{c},\, \frac{c+r}{c}\right)|

entropy =|

mgf =|

char = = \frac{c(-it)^{kc}}{\Gamma(k)}H_{1,2}^{2,1}\!\left[(-it)^c\left| \begin{matrix}

(-k, 1)\\(0, 1),(-kc,c)\end{matrix}\right. \right], t\neq 0
= 1, t = 0
where \Gamma is the Gamma function and H is the Fox H-function.{{cite journal |last2=Pogány |first2=T. K. |last1=Nadarajah |first1=S. |last3=Saxena|first3=R. K.|year=2012 |title= On the characteristic function for Burr distributions |journal=Statistics |volume=46 |issue=3 |pages=419–428 |doi=10.1080/02331888.2010.513442 |s2cid=120848446 }}

}}

In probability theory, statistics and econometrics, the Burr Type XII distribution or simply the Burr distribution{{cite journal |last=Burr |first=I. W. |year=1942 |title=Cumulative frequency functions |journal=Annals of Mathematical Statistics |volume=13 |issue=2 |pages=215–232 |jstor=2235756 |doi=10.1214/aoms/1177731607|doi-access=free }} is a continuous probability distribution for a non-negative random variable. It is also known as the Singh–Maddala distribution{{cite journal |last2=Maddala |first2=G. |last1=Singh |first1=S. |year=1976 |title=A Function for the Size Distribution of Incomes |journal=Econometrica |volume=44 |issue=5 |pages=963–970 |jstor=1911538 |doi=10.2307/1911538 }} and is one of a number of different distributions sometimes called the "generalized log-logistic distribution".

Definitions

= Probability density function =

The Burr (Type XII) distribution has probability density function:{{cite book |last=Maddala |first=G. S. |orig-year=1983 |year=1996 |title=Limited-Dependent and Qualitative Variables in Econometrics |publisher=Cambridge University Press |isbn=0-521-33825-5 }}{{Citation|doi=10.2307/1402945|title=A Look at the Burr and Related Distributions| first=Pandu R.| last=Tadikamalla| journal=International Statistical Review| volume=48| year=1980| pages=337–344|issue=3|jstor=1402945}}

:

\begin{align}

f(x;c,k) & = ck\frac{x^{c-1}}{(1+x^c)^{k+1}} \\[6pt]

f(x;c,k,\lambda) & = \frac{ck}{\lambda} \left( \frac{x}{\lambda} \right)^{c-1} \left[1 + \left(\frac{x}{\lambda}\right)^c\right]^{-k-1}

\end{align}

The \lambda parameter scales the underlying variate and is a positive real.

= Cumulative distribution function =

The cumulative distribution function is:

:F(x;c,k) = 1-\left(1+x^c\right)^{-k}

:F(x;c,k,\lambda) = 1 - \left[1 + \left(\frac{x}{\lambda}\right)^c \right]^{-k}

Applications

It is most commonly used to model household income, see for example: Household income in the U.S. and compare to magenta graph at right.

Random variate generation

Given a random variable U drawn from the uniform distribution in the interval \left(0, 1\right), the random variable

:X=\lambda \left (\frac{1}{\sqrt[k]{1-U}}-1 \right )^{1/c}

has a Burr Type XII distribution with parameters c, k and \lambda. This follows from the inverse cumulative distribution function given above.

Related distributions

  • When k = 1, the Burr distribution is a log-logistic distribution sometimes referred to as the Fisk distribution, a special case of the Champernowne distribution.{{cite book|author=C. Kleiber and S. Kotz|title=Statistical Size Distributions in Economics and Actuarial Sciences|publisher=Wiley| location=New York|year = 2003}} See Sections 7.3 "Champernowne Distribution" and 6.4.1 "Fisk Distribution."{{cite journal|last=Champernowne |first=D. G.| journal=Econometrica | title= The graduation of income distributions | year=1952 | volume=20 |issue=4 | pages = 591–614 | doi=10.2307/1907644|jstor=1907644}}
  • The Burr Type XII distribution is a member of a system of continuous distributions introduced by Irving W. Burr (1942), which comprises 12 distributions.See Kleiber and Kotz (2003), Table 2.4, p. 51, "The Burr Distributions."
  • The Dagum distribution, also known as the inverse Burr distribution, is the distribution of 1 / X, where X has the Burr distribution

References

{{reflist}}

Further reading

  • {{cite journal |last=Rodriguez |first=R. N. |year=1977 |title=A guide to Burr Type XII distributions |journal=Biometrika |volume=64 |issue=1 |pages=129–134 |doi=10.1093/biomet/64.1.129 |url=http://www.lib.ncsu.edu/resolver/1840.4/3481 |url-access=subscription }}