Cantellated 5-simplexes
class=wikitable align=right width=450 style="margin-left:1em;" |
align=center
|150px |150px |150px |
align=center
|150px |150px |150px |
colspan=3|Orthogonal projections in A5 Coxeter plane |
---|
In five-dimensional geometry, a cantellated 5-simplex is a convex uniform 5-polytope, being a cantellation of the regular 5-simplex.
There are unique 4 degrees of cantellation for the 5-simplex, including truncations.
{{clear}}
Cantellated 5-simplex
class="wikitable" align="right" style="margin-left:10px" width="280" | ||||
bgcolor=#e7dcc3 align=center colspan=3|Cantellated 5-simplex | ||||
bgcolor=#e7dcc3|Type
|colspan=2|Uniform 5-polytope | ||||
bgcolor=#e7dcc3|Schläfli symbol
|colspan=2| rr{3,3,3,3} = | ||||
bgcolor=#e7dcc3|Coxeter-Dynkin diagram
|colspan=2|{{CDD | node_1|3|node | 3|node_1 | 3|node | 3|node}} or {{CDD|node|split1|nodes_11|3a|nodea|3a|nodea}} |
bgcolor=#e7dcc3|4-faces
|27 | ||||
bgcolor=#e7dcc3|Cells
|135 | ||||
bgcolor=#e7dcc3|Faces
|290 | ||||
bgcolor=#e7dcc3|Edges
|colspan=2|240 | ||||
bgcolor=#e7dcc3|Vertices
|colspan=2|60 | ||||
bgcolor=#e7dcc3|Vertex figure
|colspan=2|80px | ||||
bgcolor=#e7dcc3|Coxeter group
|colspan=2| A5 [3,3,3,3], order 720 | ||||
bgcolor=#e7dcc3|Properties
|colspan=2|convex |
The cantellated 5-simplex has 60 vertices, 240 edges, 290 faces (200 triangles and 90 squares), 135 cells (30 tetrahedra, 30 octahedra, 15 cuboctahedra and 60 triangular prisms), and 27 4-faces (6 cantellated 5-cell, 6 rectified 5-cells, and 15 tetrahedral prisms).
= Alternate names =
- Cantellated hexateron
- Small rhombated hexateron (Acronym: sarx) (Jonathan Bowers)Klitizing, (x3o3x3o3o - sarx)
= Coordinates =
The vertices of the cantellated 5-simplex can be most simply constructed on a hyperplane in 6-space as permutations of (0,0,0,1,1,2) or of (0,1,1,2,2,2). These represent positive orthant facets of the cantellated hexacross and bicantellated hexeract respectively.
= Images =
{{5-simplex Coxeter plane graphs|t02|150}}
Bicantellated 5-simplex
class="wikitable" align="right" style="margin-left:10px" width="280" | ||
bgcolor=#e7dcc3 align=center colspan=3|Bicantellated 5-simplex | ||
bgcolor=#e7dcc3|Type
|colspan=2|Uniform 5-polytope | ||
bgcolor=#e7dcc3|Schläfli symbol
|colspan=2|2rr{3,3,3,3} = | ||
bgcolor=#e7dcc3|Coxeter-Dynkin diagram
|colspan=2|{{CDD | node|3|node_1 | 3|node|3|node_1|3|node}} or {{CDD|node|split1|nodes_11|3ab|nodes}} |
bgcolor=#e7dcc3|4-faces
| 32 |12 t02{3,3,3} | ||
bgcolor=#e7dcc3|Cells
|180 |30 t1{3,3} | ||
bgcolor=#e7dcc3|Faces
|420 |240 {3} | ||
bgcolor=#e7dcc3|Edges
|colspan=2|360 | ||
bgcolor=#e7dcc3|Vertices
|colspan=2|90 | ||
bgcolor=#e7dcc3|Vertex figure
|colspan=2|100px | ||
bgcolor=#e7dcc3|Coxeter group | ||
bgcolor=#e7dcc3|Properties |
= Alternate names =
- Bicantellated hexateron
- Small birhombated {{not a typo|dodecateron}} (Acronym: {{not a typo|sibrid}}) (Jonathan Bowers)Klitizing, (o3x3o3x3o - {{not a typo|sibrid}})
= Coordinates =
The coordinates can be made in 6-space, as 90 permutations of:
: (0,0,1,1,2,2)
This construction exists as one of 64 orthant facets of the bicantellated 6-orthoplex.
= Images =
{{5-simplex2 Coxeter plane graphs|t13|150}}
Cantitruncated 5-simplex
class="wikitable" align="right" style="margin-left:10px" width="250" | ||
bgcolor=#e7dcc3 align=center colspan=3|cantitruncated 5-simplex | ||
bgcolor=#e7dcc3|Type
|colspan=2|Uniform 5-polytope | ||
bgcolor=#e7dcc3|Schläfli symbol
|colspan=2| tr{3,3,3,3} = | ||
bgcolor=#e7dcc3|Coxeter-Dynkin diagram
|colspan=2|{{CDD | node_1|3|node_1 | 3|node_1|3|node|3|node}} or {{CDD|node_1|split1|nodes_11|3a|nodea|3a|nodea}} |
bgcolor=#e7dcc3|4-faces
|27 |6 t012{3,3,3}25px | ||
bgcolor=#e7dcc3|Cells
|135 | ||
bgcolor=#e7dcc3|Faces
|290 | ||
bgcolor=#e7dcc3|Edges
|colspan=2|300 | ||
bgcolor=#e7dcc3|Vertices
|colspan=2|120 | ||
bgcolor=#e7dcc3|Vertex figure | ||
bgcolor=#e7dcc3|Coxeter group
|colspan=2| A5 [3,3,3,3], order 720 | ||
bgcolor=#e7dcc3|Properties
|colspan=2|convex |
= Alternate names =
- Cantitruncated hexateron
- Great rhombated hexateron (Acronym: {{not a typo|garx}}) (Jonathan Bowers)Klitizing, (x3x3x3o3o - {{not a typo|garx}})
= Coordinates =
The vertices of the cantitruncated 5-simplex can be most simply constructed on a hyperplane in 6-space as permutations of (0,0,0,1,2,3) or of (0,1,2,3,3,3). These construction can be seen as facets of the cantitruncated 6-orthoplex or bicantitruncated 6-cube respectively.
= Images =
{{5-simplex Coxeter plane graphs|t012|150}}
Bicantitruncated 5-simplex
class="wikitable" align="right" style="margin-left:10px" width="280" | |
bgcolor=#e7dcc3 align=center colspan=3|Bicantitruncated 5-simplex | |
bgcolor=#e7dcc3|Type
|colspan=2|Uniform 5-polytope | |
bgcolor=#e7dcc3|Schläfli symbol
|colspan=2|2tr{3,3,3,3} = | |
bgcolor=#e7dcc3|Coxeter-Dynkin diagram
|colspan=2|{{CDD | node|3|node_1|3|node_1|3|node_1|3|node}} or {{CDD|node_1|split1|nodes_11|3ab|nodes}} |
bgcolor=#e7dcc3|4-faces
| 32 | |
bgcolor=#e7dcc3|Cells
|180 | |
bgcolor=#e7dcc3|Faces
|420 | |
bgcolor=#e7dcc3|Edges
|colspan=2|450 | |
bgcolor=#e7dcc3|Vertices
|colspan=2|180 | |
bgcolor=#e7dcc3|Vertex figure
|colspan=2|100px | |
bgcolor=#e7dcc3|Coxeter group | |
bgcolor=#e7dcc3|Properties |
= Alternate names =
- Bicantitruncated hexateron
- Great birhombated {{not a typo|dodecateron}}(Acronym: {{not a typo|gibrid}}) (Jonathan Bowers)Klitizing, (o3x3x3x3o - {{not a typo|gibrid}})
= Coordinates =
The coordinates can be made in 6-space, as 180 permutations of:
: (0,0,1,2,3,3)
This construction exists as one of 64 orthant facets of the bicantitruncated 6-orthoplex.
= Images =
{{5-simplex2 Coxeter plane graphs|t123|150}}
Related uniform 5-polytopes
The cantellated 5-simplex is one of 19 uniform 5-polytopes based on the [3,3,3,3] Coxeter group, all shown here in A5 Coxeter plane orthographic projections. (Vertices are colored by projection overlap order, red, orange, yellow, green, cyan, blue, purple having progressively more vertices)
{{Hexateron family}}
Notes
{{reflist}}
References
- H.S.M. Coxeter:
- H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
- Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, {{ISBN|978-0-471-01003-6}} [http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471010030.html]
- (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
- (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
- (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
- Norman Johnson Uniform Polytopes, Manuscript (1991)
- N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D.
- {{KlitzingPolytopes|polytera.htm|5D|uniform polytopes (polytera)}} x3o3x3o3o - sarx, o3x3o3x3o - {{not a typo|sibrid}}, x3x3x3o3o - {{not a typo|garx}}, o3x3x3x3o - {{not a typo|gibrid}}
External links
- {{PolyCell | urlname = glossary.html#simplex| title = Glossary for hyperspace}}
- [http://www.polytope.net/hedrondude/topes.htm Polytopes of Various Dimensions], Jonathan Bowers
- [http://tetraspace.alkaline.org/glossary.htm Multi-dimensional Glossary]
{{Polytopes}}