Cantellated 5-simplexes

class=wikitable align=right width=450 style="margin-left:1em;"
align=center

|150px
5-simplex
{{CDD|node_1|3|node|3|node|3|node|3|node}}

|150px
Cantellated 5-simplex
{{CDD|node_1|3|node|3|node_1|3|node|3|node}}

|150px
Bicantellated 5-simplex
{{CDD|node|3|node_1|3|node|3|node_1|3|node}}

align=center

|150px
Birectified 5-simplex
{{CDD|node|3|node|3|node_1|3|node|3|node}}

|150px
Cantitruncated 5-simplex
{{CDD|node_1|3|node_1|3|node_1|3|node|3|node}}

|150px
Bicantitruncated 5-simplex
{{CDD|node|3|node_1|3|node_1|3|node_1|3|node}}

colspan=3|Orthogonal projections in A5 Coxeter plane

In five-dimensional geometry, a cantellated 5-simplex is a convex uniform 5-polytope, being a cantellation of the regular 5-simplex.

There are unique 4 degrees of cantellation for the 5-simplex, including truncations.

{{clear}}

Cantellated 5-simplex

class="wikitable" align="right" style="margin-left:10px" width="280"
bgcolor=#e7dcc3 align=center colspan=3|Cantellated 5-simplex
bgcolor=#e7dcc3|Type

|colspan=2|Uniform 5-polytope

bgcolor=#e7dcc3|Schläfli symbol

|colspan=2| rr{3,3,3,3} = r\left\{\begin{array}{l}3, 3, 3\\3\end{array}\right\}

bgcolor=#e7dcc3|Coxeter-Dynkin diagram

|colspan=2|{{CDD

node_1|3|node3|node_13|node3|node}}
or {{CDD|node|split1|nodes_11|3a|nodea|3a|nodea}}
bgcolor=#e7dcc3|4-faces

|27

|6 r{3,3,3}25px
6 rr{3,3,3}25px
15 {}x{3,3}25px

bgcolor=#e7dcc3|Cells

|135

|30 {3,3}25px
30 r{3,3}25px
15 rr{3,3}25px
60 {}x{3}25px

bgcolor=#e7dcc3|Faces

|290

|200 {3}
90 {4}

bgcolor=#e7dcc3|Edges

|colspan=2|240

bgcolor=#e7dcc3|Vertices

|colspan=2|60

bgcolor=#e7dcc3|Vertex figure

|colspan=2|80px
Tetrahedral prism

bgcolor=#e7dcc3|Coxeter group

|colspan=2| A5 [3,3,3,3], order 720

bgcolor=#e7dcc3|Properties

|colspan=2|convex

The cantellated 5-simplex has 60 vertices, 240 edges, 290 faces (200 triangles and 90 squares), 135 cells (30 tetrahedra, 30 octahedra, 15 cuboctahedra and 60 triangular prisms), and 27 4-faces (6 cantellated 5-cell, 6 rectified 5-cells, and 15 tetrahedral prisms).

= Alternate names =

  • Cantellated hexateron
  • Small rhombated hexateron (Acronym: sarx) (Jonathan Bowers)Klitizing, (x3o3x3o3o - sarx)

= Coordinates =

The vertices of the cantellated 5-simplex can be most simply constructed on a hyperplane in 6-space as permutations of (0,0,0,1,1,2) or of (0,1,1,2,2,2). These represent positive orthant facets of the cantellated hexacross and bicantellated hexeract respectively.

= Images =

{{5-simplex Coxeter plane graphs|t02|150}}

Bicantellated 5-simplex

class="wikitable" align="right" style="margin-left:10px" width="280"
bgcolor=#e7dcc3 align=center colspan=3|Bicantellated 5-simplex
bgcolor=#e7dcc3|Type

|colspan=2|Uniform 5-polytope

bgcolor=#e7dcc3|Schläfli symbol

|colspan=2|2rr{3,3,3,3} = r\left\{\begin{array}{l}3, 3\\3 ,3\end{array}\right\}

bgcolor=#e7dcc3|Coxeter-Dynkin diagram

|colspan=2|{{CDD

node|3|node_13|node|3|node_1|3|node}}
or {{CDD|node|split1|nodes_11|3ab|nodes}}
bgcolor=#e7dcc3|4-faces

| 32

|12 t02{3,3,3}
20 {3}x{3}

bgcolor=#e7dcc3|Cells

|180

|30 t1{3,3}
120 {}x{3}
30 t02{3,3}

bgcolor=#e7dcc3|Faces

|420

|240 {3}
180 {4}

bgcolor=#e7dcc3|Edges

|colspan=2|360

bgcolor=#e7dcc3|Vertices

|colspan=2|90

bgcolor=#e7dcc3|Vertex figure

|colspan=2|100px

bgcolor=#e7dcc3|Coxeter group

|colspan=2|A5×2, 3,3,3,3, order 1440

bgcolor=#e7dcc3|Properties

|colspan=2|convex, isogonal

= Alternate names =

  • Bicantellated hexateron
  • Small birhombated {{not a typo|dodecateron}} (Acronym: {{not a typo|sibrid}}) (Jonathan Bowers)Klitizing, (o3x3o3x3o - {{not a typo|sibrid}})

= Coordinates =

The coordinates can be made in 6-space, as 90 permutations of:

: (0,0,1,1,2,2)

This construction exists as one of 64 orthant facets of the bicantellated 6-orthoplex.

= Images =

{{5-simplex2 Coxeter plane graphs|t13|150}}

Cantitruncated 5-simplex

class="wikitable" align="right" style="margin-left:10px" width="250"
bgcolor=#e7dcc3 align=center colspan=3|cantitruncated 5-simplex
bgcolor=#e7dcc3|Type

|colspan=2|Uniform 5-polytope

bgcolor=#e7dcc3|Schläfli symbol

|colspan=2| tr{3,3,3,3} = t\left\{\begin{array}{l}3, 3, 3\\3\end{array}\right\}

bgcolor=#e7dcc3|Coxeter-Dynkin diagram

|colspan=2|{{CDD

node_1|3|node_13|node_1|3|node|3|node}}
or {{CDD|node_1|split1|nodes_11|3a|nodea|3a|nodea}}
bgcolor=#e7dcc3|4-faces

|27

|6 t012{3,3,3}25px
6 t{3,3,3}25px
15 {}x{3,3}

bgcolor=#e7dcc3|Cells

|135

|15 t012{3,3} 25px
30 t{3,3}25px
60 {}x{3}
30 {3,3}25px

bgcolor=#e7dcc3|Faces

|290

|120 {3}25px
80 {6}25px
90 {}x{}25px

bgcolor=#e7dcc3|Edges

|colspan=2|300

bgcolor=#e7dcc3|Vertices

|colspan=2|120

bgcolor=#e7dcc3|Vertex figure

|colspan=2|80px
Irr. 5-cell

bgcolor=#e7dcc3|Coxeter group

|colspan=2| A5 [3,3,3,3], order 720

bgcolor=#e7dcc3|Properties

|colspan=2|convex

= Alternate names =

  • Cantitruncated hexateron
  • Great rhombated hexateron (Acronym: {{not a typo|garx}}) (Jonathan Bowers)Klitizing, (x3x3x3o3o - {{not a typo|garx}})

= Coordinates =

The vertices of the cantitruncated 5-simplex can be most simply constructed on a hyperplane in 6-space as permutations of (0,0,0,1,2,3) or of (0,1,2,3,3,3). These construction can be seen as facets of the cantitruncated 6-orthoplex or bicantitruncated 6-cube respectively.

= Images =

{{5-simplex Coxeter plane graphs|t012|150}}

Bicantitruncated 5-simplex

class="wikitable" align="right" style="margin-left:10px" width="280"
bgcolor=#e7dcc3 align=center colspan=3|Bicantitruncated 5-simplex
bgcolor=#e7dcc3|Type

|colspan=2|Uniform 5-polytope

bgcolor=#e7dcc3|Schläfli symbol

|colspan=2|2tr{3,3,3,3} = t\left\{\begin{array}{l}3, 3\\3 ,3\end{array}\right\}

bgcolor=#e7dcc3|Coxeter-Dynkin diagram

|colspan=2|{{CDD

node|3|node_1|3|node_1|3|node_1|3|node}}
or {{CDD|node_1|split1|nodes_11|3ab|nodes}}
bgcolor=#e7dcc3|4-faces

| 32

|12 tr{3,3,3}
20 {3}x{3}

bgcolor=#e7dcc3|Cells

|180

|30 t{3,3}
120 {}x{3}
30 t{3,4}

bgcolor=#e7dcc3|Faces

|420

|240 {3}
180 {4}

bgcolor=#e7dcc3|Edges

|colspan=2|450

bgcolor=#e7dcc3|Vertices

|colspan=2|180

bgcolor=#e7dcc3|Vertex figure

|colspan=2|100px

bgcolor=#e7dcc3|Coxeter group

|colspan=2|A5×2, 3,3,3,3, order 1440

bgcolor=#e7dcc3|Properties

|colspan=2|convex, isogonal

= Alternate names =

  • Bicantitruncated hexateron
  • Great birhombated {{not a typo|dodecateron}}(Acronym: {{not a typo|gibrid}}) (Jonathan Bowers)Klitizing, (o3x3x3x3o - {{not a typo|gibrid}})

= Coordinates =

The coordinates can be made in 6-space, as 180 permutations of:

: (0,0,1,2,3,3)

This construction exists as one of 64 orthant facets of the bicantitruncated 6-orthoplex.

= Images =

{{5-simplex2 Coxeter plane graphs|t123|150}}

Related uniform 5-polytopes

The cantellated 5-simplex is one of 19 uniform 5-polytopes based on the [3,3,3,3] Coxeter group, all shown here in A5 Coxeter plane orthographic projections. (Vertices are colored by projection overlap order, red, orange, yellow, green, cyan, blue, purple having progressively more vertices)

{{Hexateron family}}

Notes

{{reflist}}

References

  • H.S.M. Coxeter:
  • H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
  • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, {{ISBN|978-0-471-01003-6}} [http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471010030.html]
  • (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
  • (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
  • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
  • Norman Johnson Uniform Polytopes, Manuscript (1991)
  • N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D.
  • {{KlitzingPolytopes|polytera.htm|5D|uniform polytopes (polytera)}} x3o3x3o3o - sarx, o3x3o3x3o - {{not a typo|sibrid}}, x3x3x3o3o - {{not a typo|garx}}, o3x3x3x3o - {{not a typo|gibrid}}