Cantellated 7-simplexes
class=wikitable style="float:right; margin-left:8px" |
align=center
|150px |150px |150px |150px |
align=center
|150px |150px |150px |150px |
colspan=4|Orthogonal projections in A7 Coxeter plane |
---|
{{-}}
In seven-dimensional geometry, a cantellated 7-simplex is a convex uniform 7-polytope, being a cantellation of the regular 7-simplex.
There are unique 6 degrees of cantellation for the 7-simplex, including truncations.
Cantellated 7-simplex
class="wikitable" align="right" style="margin-left:10px" width="250"
!bgcolor=#e7dcc3 colspan=2|Cantellated 7-simplex | ||
bgcolor=#e7dcc3|Type | uniform 7-polytope | |
bgcolor=#e7dcc3|Schläfli symbol | rr{3,3,3,3,3,3} or | |
bgcolor=#e7dcc3|Coxeter-Dynkin diagram | {{CDD|node_1|3|node|3|node_1|3|node|3|node|3|node|3|node}} or {{CDD|node|split1|nodes_11 | 3a|nodea|3a|nodea|3a|nodea|3a|nodea}} |
bgcolor=#e7dcc3|6-faces | ||
bgcolor=#e7dcc3|5-faces | ||
bgcolor=#e7dcc3|4-faces | ||
bgcolor=#e7dcc3|Cells | ||
bgcolor=#e7dcc3|Faces | ||
bgcolor=#e7dcc3|Edges | 1008 | |
bgcolor=#e7dcc3|Vertices | 168 | |
bgcolor=#e7dcc3|Vertex figure | 5-simplex prism | |
bgcolor=#e7dcc3|Coxeter groups | A7, [3,3,3,3,3,3] | |
bgcolor=#e7dcc3|Properties | convex |
= Alternate names =
- Small rhombated octaexon (acronym: saro) (Jonathan Bowers)Klitizing, (x3o3x3o3o3o3o - saro)
= Coordinates =
The vertices of the cantellated 7-simplex can be most simply positioned in 8-space as permutations of (0,0,0,0,0,1,1,2). This construction is based on facets of the cantellated 8-orthoplex.
= Images =
{{7-simplex Coxeter plane graphs|t02|150}}
Bicantellated 7-simplex
class="wikitable" align="right" style="margin-left:10px" width="250"
! style="background:#e7dcc3;" colspan="2"|Bicantellated 7-simplex | |
style="background:#e7dcc3;"|Type | uniform 7-polytope |
style="background:#e7dcc3;"|Schläfli symbol | r2r{3,3,3,3,3,3} or |
style="background:#e7dcc3;"|Coxeter-Dynkin diagrams | {{CDD|node|3|node_1|3|node|3|node_1|3|node|3|node|3|node}} or {{CDD|node|split1|nodes_11|3ab|nodes|3a|nodea|3a|nodea}} |
style="background:#e7dcc3;"|6-faces | |
style="background:#e7dcc3;"|5-faces | |
style="background:#e7dcc3;"|4-faces | |
style="background:#e7dcc3;"|Cells | |
style="background:#e7dcc3;"|Faces | |
style="background:#e7dcc3;"|Edges | 2520 |
style="background:#e7dcc3;"|Vertices | 420 |
style="background:#e7dcc3;"|Vertex figure | |
style="background:#e7dcc3;"|Coxeter groups | A7, [3,3,3,3,3,3] |
style="background:#e7dcc3;"|Properties | convex |
= Alternate names =
- Small birhombated octaexon (acronym: sabro) (Jonathan Bowers)Klitizing, (o3x3o3x3o3o3o - sabro)
= Coordinates =
The vertices of the bicantellated 7-simplex can be most simply positioned in 8-space as permutations of (0,0,0,0,1,1,2,2). This construction is based on facets of the bicantellated 8-orthoplex.
= Images =
{{7-simplex Coxeter plane graphs|t13|150}}
Tricantellated 7-simplex
class="wikitable" align="right" style="margin-left:10px" width="250"
! style="background:#e7dcc3;" colspan="2"|Tricantellated 7-simplex | |
style="background:#e7dcc3;"|Type | uniform 7-polytope |
style="background:#e7dcc3;"|Schläfli symbol | r3r{3,3,3,3,3,3} or |
style="background:#e7dcc3;"|Coxeter-Dynkin diagrams | {{CDD|node|3|node|3|node_1|3|node|3|node_1|3|node|3|node}} or {{CDD|node|split1|nodes_11|3ab|nodes|3ab|nodes}} |
style="background:#e7dcc3;"|6-faces | |
style="background:#e7dcc3;"|5-faces | |
style="background:#e7dcc3;"|4-faces | |
style="background:#e7dcc3;"|Cells | |
style="background:#e7dcc3;"|Faces | |
style="background:#e7dcc3;"|Edges | 3360 |
style="background:#e7dcc3;"|Vertices | 560 |
style="background:#e7dcc3;"|Vertex figure | |
style="background:#e7dcc3;"|Coxeter groups | A7, [3,3,3,3,3,3] |
style="background:#e7dcc3;"|Properties | convex |
= Alternate names=
- Small trirhombihexadecaexon (stiroh) (Jonathan Bowers)Klitizing, (o3o3x3o3x3o3o - stiroh)
= Coordinates =
The vertices of the tricantellated 7-simplex can be most simply positioned in 8-space as permutations of (0,0,0,1,1,2,2,2). This construction is based on facets of the tricantellated 8-orthoplex.
= Images =
{{7-simplex Coxeter plane graphs|t24|150}}
Cantitruncated 7-simplex
class="wikitable" align="right" style="margin-left:10px" width="250"
! style="background:#e7dcc3;" colspan="2"|Cantitruncated 7-simplex | ||
style="background:#e7dcc3;"|Type | uniform 7-polytope | |
style="background:#e7dcc3;"|Schläfli symbol | tr{3,3,3,3,3,3} or | |
style="background:#e7dcc3;"|Coxeter-Dynkin diagrams | {{CDD|node_1|3|node_1|3|node_1|3|node|3|node|3|node|3|node}} {{CDD|node_1|split1|nodes_11 | 3a|nodea|3a|nodea|3a|nodea|3a|nodea}} |
style="background:#e7dcc3;"|6-faces | ||
style="background:#e7dcc3;"|5-faces | ||
style="background:#e7dcc3;"|4-faces | ||
style="background:#e7dcc3;"|Cells | ||
style="background:#e7dcc3;"|Faces | ||
style="background:#e7dcc3;"|Edges | 1176 | |
style="background:#e7dcc3;"|Vertices | 336 | |
style="background:#e7dcc3;"|Vertex figure | ||
style="background:#e7dcc3;"|Coxeter groups | A7, [3,3,3,3,3,3] | |
style="background:#e7dcc3;"|Properties | convex |
= Alternate names =
- Great rhombated octaexon (acronym: garo) (Jonathan Bowers)Klitizing, (x3x3x3o3o3o3o - garo)
= Coordinates =
The vertices of the cantitruncated 7-simplex can be most simply positioned in 8-space as permutations of (0,0,0,0,0,1,2,3). This construction is based on facets of the cantitruncated 8-orthoplex.
= Images =
{{7-simplex Coxeter plane graphs|t012|150}}
Bicantitruncated 7-simplex
class="wikitable" align="right" style="margin-left:10px" width="250"
! style="background:#e7dcc3;" colspan="2"|Bicantitruncated 7-simplex | |
style="background:#e7dcc3;"|Type | uniform 7-polytope |
style="background:#e7dcc3;"|Schläfli symbol | t2r{3,3,3,3,3,3} or |
style="background:#e7dcc3;"|Coxeter-Dynkin diagrams | {{CDD|node|3|node_1|3|node_1|3|node_1|3|node|3|node|3|node}} or {{CDD|node_1|split1|nodes_11|3ab|nodes|3a|nodea|3a|nodea}} |
style="background:#e7dcc3;"|6-faces | |
style="background:#e7dcc3;"|5-faces | |
style="background:#e7dcc3;"|4-faces | |
style="background:#e7dcc3;"|Cells | |
style="background:#e7dcc3;"|Faces | |
style="background:#e7dcc3;"|Edges | 2940 |
style="background:#e7dcc3;"|Vertices | 840 |
style="background:#e7dcc3;"|Vertex figure | |
style="background:#e7dcc3;"|Coxeter groups | A7, [3,3,3,3,3,3] |
style="background:#e7dcc3;"|Properties | convex |
= Alternate names =
- Great birhombated octaexon (acronym: gabro) (Jonathan Bowers)Klitizing, (o3x3x3x3o3o3o - gabro)
= Coordinates =
The vertices of the bicantitruncated 7-simplex can be most simply positioned in 8-space as permutations of (0,0,0,0,1,2,3,3). This construction is based on facets of the bicantitruncated 8-orthoplex.
= Images =
{{7-simplex Coxeter plane graphs|t123|150}}
Tricantitruncated 7-simplex
class="wikitable" align="right" style="margin-left:10px" width="250"
! style="background:#e7dcc3;" colspan="2"|Tricantitruncated 7-simplex | |
style="background:#e7dcc3;"|Type | uniform 7-polytope |
style="background:#e7dcc3;"|Schläfli symbol | t3r{3,3,3,3,3,3} or |
style="background:#e7dcc3;"|Coxeter-Dynkin diagrams | {{CDD|node|3|node|3|node_1|3|node_1|3|node_1|3|node|3|node}} or {{CDD|node_1|split1|nodes_11|3ab|nodes|3ab|nodes}} |
style="background:#e7dcc3;"|6-faces | |
style="background:#e7dcc3;"|5-faces | |
style="background:#e7dcc3;"|4-faces | |
style="background:#e7dcc3;"|Cells | |
style="background:#e7dcc3;"|Faces | |
style="background:#e7dcc3;"|Edges | 3920 |
style="background:#e7dcc3;"|Vertices | 1120 |
style="background:#e7dcc3;"|Vertex figure | |
style="background:#e7dcc3;"|Coxeter groups | A7, [3,3,3,3,3,3] |
style="background:#e7dcc3;"|Properties | convex |
= Alternate names =
- Great trirhombihexadecaexon (acronym: gatroh) (Jonathan Bowers)Klitizing, (o3o3x3x3x3o3o - gatroh)
= Coordinates =
The vertices of the tricantitruncated 7-simplex can be most simply positioned in 8-space as permutations of (0,0,0,1,2,3,4,4). This construction is based on facets of the tricantitruncated 8-orthoplex.
= Images =
{{7-simplex2 Coxeter plane graphs|t234|150}}
Related polytopes
This polytope is one of 71 uniform 7-polytopes with A7 symmetry.
{{Octaexon family}}
See also
Notes
{{reflist}}
References
- H.S.M. Coxeter:
- H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
- Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, {{ISBN|978-0-471-01003-6}} [http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471010030.html]
- (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
- (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
- (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
- Norman Johnson Uniform Polytopes, Manuscript (1991)
- N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D.
- {{KlitzingPolytopes|polyexa.htm|7D| uniform polytopes (polyexa)}} x3o3x3o3o3o3o - saro, o3x3o3x3o3o3o - sabro, o3o3x3o3x3o3o - stiroh, x3x3x3o3o3o3o - garo, o3x3x3x3o3o3o - gabro, o3o3x3x3x3o3o - gatroh
External links
- [http://www.polytope.net/hedrondude/topes.htm Polytopes of Various Dimensions]
- [http://tetraspace.alkaline.org/glossary.htm Multi-dimensional Glossary]
{{Polytopes}}