uniform 7-polytope

{{Short description|Seven-dimensional geometric object}}

align=right class=wikitable width=300 style="margin-left:1em;"

|+ Graphs of three regular and related uniform polytopes

style="vertical-align:top; text-align:center;"

|colspan=4|100px
7-simplex

|colspan=4|100px
Rectified 7-simplex

|colspan=4|100px
Truncated 7-simplex

style="vertical-align:top; text-align:center;"

|colspan=4|100px
Cantellated 7-simplex

|colspan=4|100px
Runcinated 7-simplex

|colspan=4|100px
Stericated 7-simplex

style="vertical-align:top; text-align:center;"

|colspan=6|150px
Pentellated 7-simplex

|colspan=6|150px
Hexicated 7-simplex

style="vertical-align:top; text-align:center;"

|colspan=4|100px
7-orthoplex

|colspan=4|100px
Truncated 7-orthoplex

|colspan=4|100px
Rectified 7-orthoplex

style="vertical-align:top; text-align:center;"

|colspan=4|100px
Cantellated 7-orthoplex

|colspan=4|100px
Runcinated 7-orthoplex

|colspan=4|100px
Stericated 7-orthoplex

style="vertical-align:top; text-align:center;"

|colspan=4|100px
Pentellated 7-orthoplex

|colspan=4|100px
Hexicated 7-cube

|colspan=4|100px
Pentellated 7-cube

style="vertical-align:top; text-align:center;"

|colspan=4|100px
Stericated 7-cube

|colspan=4|100px
Cantellated 7-cube

|colspan=4|100px
Runcinated 7-cube

style="vertical-align:top; text-align:center;"

|colspan=4|100px
7-cube

|colspan=4|100px
Truncated 7-cube

|colspan=4|100px
Rectified 7-cube

style="vertical-align:top; text-align:center;"

|colspan=4|100px
7-demicube

|colspan=4|100px
Cantic 7-cube

|colspan=4|100px
Runcic 7-cube

style="vertical-align:top; text-align:center;"

|colspan=4|100px
Steric 7-cube

|colspan=4|100px
Pentic 7-cube

|colspan=4|100px
Hexic 7-cube

style="vertical-align:top; text-align:center;"

|colspan=4|100px
321

|colspan=4|100px
231

|colspan=4|100px
132

In seven-dimensional geometry, a 7-polytope is a polytope contained by 6-polytope facets. Each 5-polytope ridge being shared by exactly two 6-polytope facets.

A uniform 7-polytope is one whose symmetry group is transitive on vertices and whose facets are uniform 6-polytopes.

Regular 7-polytopes

Regular 7-polytopes are represented by the Schläfli symbol {p,q,r,s,t,u} with u {p,q,r,s,t} 6-polytopes facets around each 4-face.

There are exactly three such convex regular 7-polytopes:

  1. {3,3,3,3,3,3} - 7-simplex
  2. {4,3,3,3,3,3} - 7-cube
  3. {3,3,3,3,3,4} - 7-orthoplex

There are no nonconvex regular 7-polytopes.

Characteristics

The topology of any given 7-polytope is defined by its Betti numbers and torsion coefficients.Richeson, D.; Euler's Gem: The Polyhedron Formula and the Birth of Topoplogy, Princeton, 2008.

The value of the Euler characteristic used to characterise polyhedra does not generalize usefully to higher dimensions, whatever their underlying topology. This inadequacy of the Euler characteristic to reliably distinguish between different topologies in higher dimensions led to the discovery of the more sophisticated Betti numbers.

Similarly, the notion of orientability of a polyhedron is insufficient to characterise the surface twistings of toroidal polytopes, and this led to the use of torsion coefficients.

Uniform 7-polytopes by fundamental Coxeter groups

Uniform 7-polytopes with reflective symmetry can be generated by these four Coxeter groups, represented by permutations of rings of the Coxeter-Dynkin diagrams:

class="wikitable"
#

!colspan=3|Coxeter group

!Regular and semiregular forms

!Uniform count

1A7[36]{{CDD|node|3|node|3|node|3|node|3|node|3|node|3|node}}

|

  • 7-simplex - {36}, {{CDD|node_1|3|node|3|node|3|node|3|node|3|node|3|node}}

|71

2B7[4,35]{{CDD|node|4|node|3|node|3|node|3|node|3|node|3|node}}

|

  • 7-cube - {4,35}, {{CDD|node_1|4|node|3|node|3|node|3|node|3|node|3|node}}
  • 7-orthoplex - {35,4}, {{CDD|node_1|3|node|3|node|3|node|3|node|3|node|4|node}}
  • 7-demicube - h{4,35}, {{CDD|node_h|4|node|3|node|3|node|3|node|3|node|3|node}}

|127 + 32

3D7[33,1,1]{{CDD|nodes|split2|node|3|node|3|node|3|node|3|node}}

|

  • 7-demicube, {3,34,1}, {{CDD|nodes_10ru|split2|node|3|node|3|node|3|node|3|node}}
  • 7-orthoplex, {34,31,1}, {{CDD|node_1|3|node|3|node|3|node|3|node|split1|nodes}}

|95 (0 unique)

4E7[33,2,1]{{CDD|nodea|3a|nodea|3a|branch|3a|nodea|3a|nodea|3a|nodea}}

|

  • 321 - {{CDD|nodea|3a|nodea|3a|branch|3a|nodea|3a|nodea|3a|nodea_1}}
  • 132 - {{CDD|nodea|3a|nodea|3a|branch_01lr|3a|nodea|3a|nodea|3a|nodea}}
  • 231 - {{CDD|nodea_1|3a|nodea|3a|branch|3a|nodea|3a|nodea|3a|nodea}}

|127

class="wikitable collapsed collapsible"

!colspan=12|Prismatic finite Coxeter groups

#

!colspan=2|Coxeter group

!Coxeter diagram

colspan=4|6+1
1A6A1[35]×[ ]{{CDD|node|3|node|3|node|3|node|3|node|3|node|2|node}}
2BC6A1[4,34]×[ ]{{CDD|node|4|node|3|node|3|node|3|node|3|node|2|node}}
3D6A1[33,1,1]×[ ]{{CDD|nodes|split2|node|3|node|3|node|3|node|2|node}}
4E6A1[32,2,1]×[ ]{{CDD|nodea|3a|nodea|3a|branch|3a|nodea|3a|nodea|2|nodea}}
colspan=4|5+2
1A5I2(p)[3,3,3]×[p]{{CDD|node|3|node|3|node|3|node|3|node|2|node|p|node}}
2BC5I2(p)[4,3,3]×[p]{{CDD|node|4|node|3|node|3|node|3|node|2|node|p|node}}
3D5I2(p)[32,1,1]×[p]{{CDD|nodes|split2|node|3|node|3|node|2|node|p|node}}
colspan=4|5+1+1
1A5A12[3,3,3]×[ ]2{{CDD|node|3|node|3|node|3|node|3|node|2|node|2|node}}
2BC5A12[4,3,3]×[ ]2{{CDD|node|4|node|3|node|3|node|3|node|2|node|2|node}}
3D5A12[32,1,1]×[ ]2{{CDD|nodes|split2|node|3|node|3|node|2|node|2|node}}
colspan=4|4+3
1A4A3[3,3,3]×[3,3]{{CDD|node|3|node|3|node|3|node|2|node|3|node|3|node}}
2A4B3[3,3,3]×[4,3]{{CDD|node|3|node|3|node|3|node|2|node|4|node|3|node}}
3A4H3[3,3,3]×[5,3]{{CDD|node|3|node|3|node|3|node|2|node|5|node|3|node}}
4BC4A3[4,3,3]×[3,3]{{CDD|node|4|node|3|node|3|node|2|node|3|node|3|node}}
5BC4B3[4,3,3]×[4,3]{{CDD|node|4|node|3|node|3|node|2|node|4|node|3|node}}
6BC4H3[4,3,3]×[5,3]{{CDD|node|4|node|3|node|3|node|2|node|5|node|3|node}}
7H4A3[5,3,3]×[3,3]{{CDD|node|5|node|3|node|3|node|2|node|3|node|3|node}}
8H4B3[5,3,3]×[4,3]{{CDD|node|5|node|3|node|3|node|2|node|4|node|3|node}}
9H4H3[5,3,3]×[5,3]{{CDD|node|5|node|3|node|3|node|2|node|5|node|3|node}}
10F4A3[3,4,3]×[3,3]{{CDD|node|3|node|4|node|3|node|2|node|3|node|3|node}}
11F4B3[3,4,3]×[4,3]{{CDD|node|3|node|4|node|3|node|2|node|4|node|3|node}}
12F4H3[3,4,3]×[5,3]{{CDD|node|3|node|4|node|3|node|2|node|5|node|3|node}}
13D4A3[31,1,1]×[3,3]{{CDD|nodes|split2|node|3|node|2|node|3|node|3|node}}
14D4B3[31,1,1]×[4,3]{{CDD|nodes|split2|node|3|node|2|node|4|node|3|node}}
15D4H3[31,1,1]×[5,3]{{CDD|nodes|split2|node|3|node|2|node|5|node|3|node}}
colspan=4|4+2+1
1A4I2(p)A1[3,3,3]×[p]×[ ]{{CDD|node|3|node|3|node|3|node|2|node|p|node|2|node}}
2BC4I2(p)A1[4,3,3]×[p]×[ ]{{CDD|node|4|node|3|node|3|node|2|node|p|node|2|node}}
3F4I2(p)A1[3,4,3]×[p]×[ ]{{CDD|node|3|node|4|node|3|node|2|node|p|node|2|node}}
4H4I2(p)A1[5,3,3]×[p]×[ ]{{CDD|node|5|node|3|node|3|node|2|node|p|node|2|node}}
5D4I2(p)A1[31,1,1]×[p]×[ ]{{CDD|nodes|split2|node|3|node|2|node|p|node|2|node}}
colspan=4|4+1+1+1
1A4A13[3,3,3]×[ ]3{{CDD|node|3|node|3|node|3|node|2|node|2|node|2|node}}
2BC4A13[4,3,3]×[ ]3{{CDD|node|4|node|3|node|3|node|2|node|2|node|2|node}}
3F4A13[3,4,3]×[ ]3{{CDD|node|3|node|4|node|3|node|2|node|2|node|2|node}}
4H4A13[5,3,3]×[ ]3{{CDD|node|5|node|3|node|3|node|2|node|2|node|2|node}}
5D4A13[31,1,1]×[ ]3{{CDD|nodes|split2|node|3|node|2|node|2|node|2|node}}
colspan=4|3+3+1
1A3A3A1[3,3]×[3,3]×[ ]{{CDD|node|3|node|3|node|2|node|3|node|3|node|2|node}}
2A3B3A1[3,3]×[4,3]×[ ]{{CDD|node|3|node|3|node|2|node|4|node|3|node|2|node}}
3A3H3A1[3,3]×[5,3]×[ ]{{CDD|node|3|node|3|node|2|node|5|node|3|node|2|node}}
4BC3B3A1[4,3]×[4,3]×[ ]{{CDD|node|4|node|3|node|2|node|4|node|3|node|2|node}}
5BC3H3A1[4,3]×[5,3]×[ ]{{CDD|node|4|node|3|node|2|node|5|node|3|node|2|node}}
6H3A3A1[5,3]×[5,3]×[ ]{{CDD|node|5|node|3|node|2|node|5|node|3|node|2|node}}
colspan=4|3+2+2
1A3I2(p)I2(q)[3,3]×[p]×[q]{{CDD|node|3|node|3|node|2|node|p|node|2|node|q|node}}
2BC3I2(p)I2(q)[4,3]×[p]×[q]{{CDD|node|4|node|3|node|2|node|p|node|2|node|q|node}}
3H3I2(p)I2(q)[5,3]×[p]×[q]{{CDD|node|5|node|3|node|2|node|p|node|2|node|q|node}}
colspan=4|3+2+1+1
1A3I2(p)A12[3,3]×[p]×[ ]2{{CDD|node|3|node|3|node|2|node|p|node|2|node|2|node}}
2BC3I2(p)A12[4,3]×[p]×[ ]2{{CDD|node|4|node|3|node|2|node|p|node|2|node|2|node}}
3H3I2(p)A12[5,3]×[p]×[ ]2{{CDD|node|5|node|3|node|2|node|p|node|2|node|2|node}}
colspan=4|3+1+1+1+1
1A3A14[3,3]×[ ]4{{CDD|node|3|node|3|node|2|node|2|node|2|node|2|node}}
2BC3A14[4,3]×[ ]4{{CDD|node|4|node|3|node|2|node|2|node|2|node|2|node}}
3H3A14[5,3]×[ ]4{{CDD|node|5|node|3|node|2|node|2|node|2|node|2|node}}
colspan=4|2+2+2+1
1I2(p)I2(q)I2(r)A1[p]×[q]×[r]×[ ]{{CDD|node|p|node|2|node|q|node|2|node|r|node|2|node}}
colspan=4|2+2+1+1+1
1I2(p)I2(q)A13[p]×[q]×[ ]3{{CDD|node|p|node|2|node|q|node|2|node|2|node|2|node}}
colspan=4|2+1+1+1+1+1
1I2(p)A15[p]×[ ]5{{CDD|node|p|node|2|node|2|node|2|node|2|node|2|node}}
colspan=4|1+1+1+1+1+1+1
1A17[ ]7{{CDD|node|2|node|2|node|2|node|2|node|2|node|2|node}}

The A<sub>7</sub> family

The A7 family has symmetry of order 40320 (8 factorial).

There are 71 (64+8-1) forms based on all permutations of the Coxeter-Dynkin diagrams with one or more rings. All 71 are enumerated below. Norman Johnson's truncation names are given. Bowers names and acronym are also given for cross-referencing.

See also a list of A7 polytopes for symmetric Coxeter plane graphs of these polytopes.

class="wikitable collapsible collapsed"

!colspan=12|A7 uniform polytopes

rowspan=2|#

!rowspan=2|Coxeter-Dynkin diagram

!rowspan=2|Truncation
indices

!rowspan=2|Johnson name
Bowers name (and acronym)

!rowspan=2|Basepoint

!colspan=7|Element counts

6|| 5|| 4|| 3|| 2|| 1|| 0
style="text-align:center;"

|1

{{CDD|node|3|node|3|node|3|node|3|node|3|node|3|node_1}}t07-simplex (oca)(0,0,0,0,0,0,0,1)828567056288
style="text-align:center;"

|2

{{CDD|node|3|node|3|node|3|node|3|node|3|node_1|3|node}}t1Rectified 7-simplex (roc)(0,0,0,0,0,0,1,1)168422435033616828
style="text-align:center;"

|3

{{CDD|node|3|node|3|node|3|node|3|node_1|3|node|3|node}}t2Birectified 7-simplex (broc)(0,0,0,0,0,1,1,1)1611239277084042056
style="text-align:center; background:#e0f0e0;"

|4

{{CDD|node|3|node|3|node|3|node_1|3|node|3|node|3|node}}t3Trirectified 7-simplex (he)(0,0,0,0,1,1,1,1)16112448980112056070
style="text-align:center;"

|5

{{CDD|node|3|node|3|node|3|node|3|node|3|node_1|3|node_1}}t0,1Truncated 7-simplex (toc)(0,0,0,0,0,0,1,2)168422435033619656
style="text-align:center;"

|6

{{CDD|node|3|node|3|node|3|node|3|node_1|3|node|3|node_1}}t0,2Cantellated 7-simplex (saro)(0,0,0,0,0,1,1,2)44308980175018761008168
style="text-align:center;"

|7

{{CDD|node|3|node|3|node|3|node|3|node_1|3|node_1|3|node}}t1,2Bitruncated 7-simplex (bittoc)(0,0,0,0,0,1,2,2)588168
style="text-align:center;"

|8

{{CDD|node|3|node|3|node|3|node_1|3|node|3|node|3|node_1}}t0,3Runcinated 7-simplex (spo)(0,0,0,0,1,1,1,2)1007562548483047602100280
style="text-align:center;"

|9

{{CDD|node|3|node|3|node|3|node_1|3|node|3|node_1|3|node}}t1,3Bicantellated 7-simplex (sabro)(0,0,0,0,1,1,2,2)2520420
style="text-align:center;"

|10

{{CDD|node|3|node|3|node|3|node_1|3|node_1|3|node|3|node}}t2,3Tritruncated 7-simplex (tattoc)(0,0,0,0,1,2,2,2)980280
style="text-align:center;"

|11

{{CDD|node|3|node|3|node_1|3|node|3|node|3|node|3|node_1}}t0,4Stericated 7-simplex (sco)(0,0,0,1,1,1,1,2)2240280
style="text-align:center;"

|12

{{CDD|node|3|node|3|node_1|3|node|3|node|3|node_1|3|node}}t1,4Biruncinated 7-simplex (sibpo)(0,0,0,1,1,1,2,2)4200560
style="text-align:center; background:#e0f0e0;"

|13

{{CDD|node|3|node|3|node_1|3|node|3|node_1|3|node|3|node}}t2,4Tricantellated 7-simplex (stiroh)(0,0,0,1,1,2,2,2)3360560
style="text-align:center;"

|14

{{CDD|node|3|node_1|3|node|3|node|3|node|3|node|3|node_1}}t0,5Pentellated 7-simplex (seto)(0,0,1,1,1,1,1,2)1260168
style="text-align:center; background:#e0f0e0;"

|15

{{CDD|node|3|node_1|3|node|3|node|3|node|3|node_1|3|node}}t1,5Bistericated 7-simplex (sabach)(0,0,1,1,1,1,2,2)3360420
style="text-align:center; background:#e0f0e0;"

|16

{{CDD|node_1|3|node|3|node|3|node|3|node|3|node|3|node_1}}t0,6Hexicated 7-simplex (suph)(0,1,1,1,1,1,1,2)33656
style="text-align:center;"

|17

{{CDD|node|3|node|3|node|3|node|3|node_1|3|node_1|3|node_1}}t0,1,2Cantitruncated 7-simplex (garo)(0,0,0,0,0,1,2,3)1176336
style="text-align:center;"

|18

{{CDD|node|3|node|3|node|3|node_1|3|node|3|node_1|3|node_1}}t0,1,3Runcitruncated 7-simplex (patto)(0,0,0,0,1,1,2,3)4620840
style="text-align:center;"

|19

{{CDD|node|3|node|3|node|3|node_1|3|node_1|3|node|3|node_1}}t0,2,3Runcicantellated 7-simplex (paro)(0,0,0,0,1,2,2,3)3360840
style="text-align:center;"

|20

{{CDD|node|3|node|3|node|3|node_1|3|node_1|3|node_1|3|node}}t1,2,3Bicantitruncated 7-simplex (gabro)(0,0,0,0,1,2,3,3)2940840
style="text-align:center;"

|21

{{CDD|node|3|node|3|node_1|3|node|3|node|3|node_1|3|node_1}}t0,1,4Steritruncated 7-simplex (cato)(0,0,0,1,1,1,2,3)72801120
style="text-align:center;"

|22

{{CDD|node|3|node|3|node_1|3|node|3|node_1|3|node|3|node_1}}t0,2,4Stericantellated 7-simplex (caro)(0,0,0,1,1,2,2,3)100801680
style="text-align:center;"

|23

{{CDD|node|3|node|3|node_1|3|node|3|node_1|3|node_1|3|node}}t1,2,4Biruncitruncated 7-simplex (bipto)(0,0,0,1,1,2,3,3)84001680
style="text-align:center;"

|24

{{CDD|node|3|node|3|node_1|3|node_1|3|node|3|node|3|node_1}}t0,3,4Steriruncinated 7-simplex (cepo)(0,0,0,1,2,2,2,3)50401120
style="text-align:center;"

|25

{{CDD|node|3|node|3|node_1|3|node_1|3|node|3|node_1|3|node}}t1,3,4Biruncicantellated 7-simplex (bipro)(0,0,0,1,2,2,3,3)75601680
style="text-align:center; background:#e0f0e0;"

|26

{{CDD|node|3|node|3|node_1|3|node_1|3|node_1|3|node|3|node}}t2,3,4Tricantitruncated 7-simplex (gatroh)(0,0,0,1,2,3,3,3)39201120
style="text-align:center;"

|27

{{CDD|node|3|node_1|3|node|3|node|3|node|3|node_1|3|node_1}}t0,1,5Pentitruncated 7-simplex (teto)(0,0,1,1,1,1,2,3)5460840
style="text-align:center;"

|28

{{CDD|node|3|node_1|3|node|3|node|3|node_1|3|node|3|node_1}}t0,2,5Penticantellated 7-simplex (tero)(0,0,1,1,1,2,2,3)117601680
style="text-align:center;"

|29

{{CDD|node|3|node_1|3|node|3|node|3|node_1|3|node_1|3|node}}t1,2,5Bisteritruncated 7-simplex (bacto)(0,0,1,1,1,2,3,3)92401680
style="text-align:center;"

|30

{{CDD|node|3|node_1|3|node|3|node_1|3|node|3|node|3|node_1}}t0,3,5Pentiruncinated 7-simplex (tepo)(0,0,1,1,2,2,2,3)109201680
style="text-align:center; background:#e0f0e0;"

|31

{{CDD|node|3|node_1|3|node|3|node_1|3|node|3|node_1|3|node}}t1,3,5Bistericantellated 7-simplex (bacroh)(0,0,1,1,2,2,3,3)151202520
style="text-align:center;"

|32

{{CDD|node|3|node_1|3|node_1|3|node|3|node|3|node|3|node_1}}t0,4,5Pentistericated 7-simplex (teco)(0,0,1,2,2,2,2,3)4200840
style="text-align:center;"

|33

{{CDD|node_1|3|node|3|node|3|node|3|node|3|node_1|3|node_1}}t0,1,6Hexitruncated 7-simplex (puto)(0,1,1,1,1,1,2,3)1848336
style="text-align:center;"

|34

{{CDD|node_1|3|node|3|node|3|node|3|node_1|3|node|3|node_1}}t0,2,6Hexicantellated 7-simplex (puro)(0,1,1,1,1,2,2,3)5880840
style="text-align:center; background:#e0f0e0;"

|35

{{CDD|node_1|3|node|3|node|3|node_1|3|node|3|node|3|node_1}}t0,3,6Hexiruncinated 7-simplex (puph)(0,1,1,1,2,2,2,3)84001120
style="text-align:center;"

|36

{{CDD|node|3|node|3|node|3|node_1|3|node_1|3|node_1|3|node_1}}t0,1,2,3Runcicantitruncated 7-simplex (gapo)(0,0,0,0,1,2,3,4)58801680
style="text-align:center;"

|37

{{CDD|node|3|node|3|node_1|3|node|3|node_1|3|node_1|3|node_1}}t0,1,2,4Stericantitruncated 7-simplex (cagro)(0,0,0,1,1,2,3,4)168003360
style="text-align:center;"

|38

{{CDD|node|3|node|3|node_1|3|node_1|3|node|3|node_1|3|node_1}}t0,1,3,4Steriruncitruncated 7-simplex (capto)(0,0,0,1,2,2,3,4)134403360
style="text-align:center;"

|39

{{CDD|node|3|node|3|node_1|3|node_1|3|node_1|3|node|3|node_1}}t0,2,3,4Steriruncicantellated 7-simplex (capro)(0,0,0,1,2,3,3,4)134403360
style="text-align:center;"

|40

{{CDD|node|3|node|3|node_1|3|node_1|3|node_1|3|node_1|3|node}}t1,2,3,4Biruncicantitruncated 7-simplex (gibpo)(0,0,0,1,2,3,4,4)117603360
style="text-align:center;"

|41

{{CDD|node|3|node_1|3|node|3|node|3|node_1|3|node_1|3|node_1}}t0,1,2,5Penticantitruncated 7-simplex (tegro)(0,0,1,1,1,2,3,4)184803360
style="text-align:center;"

|42

{{CDD|node|3|node_1|3|node|3|node_1|3|node|3|node_1|3|node_1}}t0,1,3,5Pentiruncitruncated 7-simplex (tapto)(0,0,1,1,2,2,3,4)277205040
style="text-align:center;"

|43

{{CDD|node|3|node_1|3|node|3|node_1|3|node_1|3|node|3|node_1}}t0,2,3,5Pentiruncicantellated 7-simplex (tapro)(0,0,1,1,2,3,3,4)252005040
style="text-align:center;"

|44

{{CDD|node|3|node_1|3|node|3|node_1|3|node_1|3|node_1|3|node}}t1,2,3,5Bistericantitruncated 7-simplex (bacogro)(0,0,1,1,2,3,4,4)226805040
style="text-align:center;"

|45

{{CDD|node|3|node_1|3|node_1|3|node|3|node|3|node_1|3|node_1}}t0,1,4,5Pentisteritruncated 7-simplex (tecto)(0,0,1,2,2,2,3,4)151203360
style="text-align:center;"

|46

{{CDD|node|3|node_1|3|node_1|3|node|3|node_1|3|node|3|node_1}}t0,2,4,5Pentistericantellated 7-simplex (tecro)(0,0,1,2,2,3,3,4)252005040
style="text-align:center; background:#e0f0e0;"

|47

{{CDD|node|3|node_1|3|node_1|3|node|3|node_1|3|node_1|3|node}}t1,2,4,5Bisteriruncitruncated 7-simplex (bicpath)(0,0,1,2,2,3,4,4)201605040
style="text-align:center;"

|48

{{CDD|node|3|node_1|3|node_1|3|node_1|3|node|3|node|3|node_1}}t0,3,4,5Pentisteriruncinated 7-simplex (tacpo)(0,0,1,2,3,3,3,4)151203360
style="text-align:center;"

|49

{{CDD|node_1|3|node|3|node|3|node|3|node_1|3|node_1|3|node_1}}t0,1,2,6Hexicantitruncated 7-simplex (pugro)(0,1,1,1,1,2,3,4)84001680
style="text-align:center;"

|50

{{CDD|node_1|3|node|3|node|3|node_1|3|node|3|node_1|3|node_1}}t0,1,3,6Hexiruncitruncated 7-simplex (pugato)(0,1,1,1,2,2,3,4)201603360
style="text-align:center;"

|51

{{CDD|node_1|3|node|3|node|3|node_1|3|node_1|3|node|3|node_1}}t0,2,3,6Hexiruncicantellated 7-simplex (pugro)(0,1,1,1,2,3,3,4)168003360
style="text-align:center;"

|52

{{CDD|node_1|3|node|3|node_1|3|node|3|node|3|node_1|3|node_1}}t0,1,4,6Hexisteritruncated 7-simplex (pucto)(0,1,1,2,2,2,3,4)201603360
style="text-align:center; background:#e0f0e0;"

|53

{{CDD|node_1|3|node|3|node_1|3|node|3|node_1|3|node|3|node_1}}t0,2,4,6Hexistericantellated 7-simplex (pucroh)(0,1,1,2,2,3,3,4)302405040
style="text-align:center; background:#e0f0e0;"

|54

{{CDD|node_1|3|node_1|3|node|3|node|3|node|3|node_1|3|node_1}}t0,1,5,6Hexipentitruncated 7-simplex (putath)(0,1,2,2,2,2,3,4)84001680
style="text-align:center;"

|55

{{CDD|node|3|node|3|node_1|3|node_1|3|node_1|3|node_1|3|node_1}}t0,1,2,3,4Steriruncicantitruncated 7-simplex (gecco)(0,0,0,1,2,3,4,5)235206720
style="text-align:center;"

|56

{{CDD|node|3|node_1|3|node|3|node_1|3|node_1|3|node_1|3|node_1}}t0,1,2,3,5Pentiruncicantitruncated 7-simplex (tegapo)(0,0,1,1,2,3,4,5)4536010080
style="text-align:center;"

|57

{{CDD|node|3|node_1|3|node_1|3|node|3|node_1|3|node_1|3|node_1}}t0,1,2,4,5Pentistericantitruncated 7-simplex (tecagro)(0,0,1,2,2,3,4,5)4032010080
style="text-align:center;"

|58

{{CDD|node|3|node_1|3|node_1|3|node_1|3|node|3|node_1|3|node_1}}t0,1,3,4,5Pentisteriruncitruncated 7-simplex (tacpeto)(0,0,1,2,3,3,4,5)4032010080
style="text-align:center;"

|59

{{CDD|node|3|node_1|3|node_1|3|node_1|3|node_1|3|node|3|node_1}}t0,2,3,4,5Pentisteriruncicantellated 7-simplex (tacpro)(0,0,1,2,3,4,4,5)4032010080
style="text-align:center; background:#e0f0e0;"

|60

{{CDD|node|3|node_1|3|node_1|3|node_1|3|node_1|3|node_1|3|node}}t1,2,3,4,5Bisteriruncicantitruncated 7-simplex (gabach)(0,0,1,2,3,4,5,5)3528010080
style="text-align:center;"

|61

{{CDD|node_1|3|node|3|node|3|node_1|3|node_1|3|node_1|3|node_1}}t0,1,2,3,6Hexiruncicantitruncated 7-simplex (pugopo)(0,1,1,1,2,3,4,5)302406720
style="text-align:center;"

|62

{{CDD|node_1|3|node|3|node_1|3|node|3|node_1|3|node_1|3|node_1}}t0,1,2,4,6Hexistericantitruncated 7-simplex (pucagro)(0,1,1,2,2,3,4,5)5040010080
style="text-align:center;"

|63

{{CDD|node_1|3|node|3|node_1|3|node_1|3|node|3|node_1|3|node_1}}t0,1,3,4,6Hexisteriruncitruncated 7-simplex (pucpato)(0,1,1,2,3,3,4,5)4536010080
style="text-align:center; background:#e0f0e0;"

|64

{{CDD|node_1|3|node|3|node_1|3|node_1|3|node_1|3|node|3|node_1}}t0,2,3,4,6Hexisteriruncicantellated 7-simplex (pucproh)(0,1,1,2,3,4,4,5)4536010080
style="text-align:center;"

|65

{{CDD|node_1|3|node_1|3|node|3|node|3|node_1|3|node_1|3|node_1}}t0,1,2,5,6Hexipenticantitruncated 7-simplex (putagro)(0,1,2,2,2,3,4,5)302406720
style="text-align:center; background:#e0f0e0;"

|66

{{CDD|node_1|3|node_1|3|node|3|node_1|3|node|3|node_1|3|node_1}}t0,1,3,5,6Hexipentiruncitruncated 7-simplex (putpath)(0,1,2,2,3,3,4,5)5040010080
style="text-align:center;"

|67

{{CDD|node|3|node_1|3|node_1|3|node_1|3|node_1|3|node_1|3|node_1}}t0,1,2,3,4,5Pentisteriruncicantitruncated 7-simplex (geto)(0,0,1,2,3,4,5,6)7056020160
style="text-align:center;"

|68

{{CDD|node_1|3|node|3|node_1|3|node_1|3|node_1|3|node_1|3|node_1}}t0,1,2,3,4,6Hexisteriruncicantitruncated 7-simplex (pugaco)(0,1,1,2,3,4,5,6)8064020160
style="text-align:center;"

|69

{{CDD|node_1|3|node_1|3|node|3|node_1|3|node_1|3|node_1|3|node_1}}t0,1,2,3,5,6Hexipentiruncicantitruncated 7-simplex (putgapo)(0,1,2,2,3,4,5,6)8064020160
style="text-align:center; background:#e0f0e0;"

|70

{{CDD|node_1|3|node_1|3|node_1|3|node|3|node_1|3|node_1|3|node_1}}t0,1,2,4,5,6Hexipentistericantitruncated 7-simplex (putcagroh)(0,1,2,3,3,4,5,6)8064020160
style="text-align:center; background:#e0f0e0;"

|71

{{CDD|node_1|3|node_1|3|node_1|3|node_1|3|node_1|3|node_1|3|node_1}}t0,1,2,3,4,5,6Omnitruncated 7-simplex (guph)(0,1,2,3,4,5,6,7)14112040320

The B<sub>7</sub> family

The B7 family has symmetry of order 645120 (7 factorial x 27).

There are 127 forms based on all permutations of the Coxeter-Dynkin diagrams with one or more rings. Johnson and Bowers names.

See also a list of B7 polytopes for symmetric Coxeter plane graphs of these polytopes.

class="wikitable collapsible collapsed

!colspan=12|B7 uniform polytopes

rowspan=2|#

!rowspan=2|Coxeter-Dynkin diagram
t-notation

!rowspan=2|Name (BSA)

!rowspan=2|Base point

!colspan=7|Element counts

6||5||4||3||2||1||0
style="text-align:center; background:#f0e0e0;"

!1

|{{CDD|node|4|node|3|node|3|node|3|node|3|node|3|node_1}}
t0{3,3,3,3,3,4}

7-orthoplex (zee)|(0,0,0,0,0,0,1)√21284486725602808414
style="text-align:center; background:#f0e0e0;"

!2

|{{CDD|node|4|node|3|node|3|node|3|node|3|node_1|3|node}}
t1{3,3,3,3,3,4}

Rectified 7-orthoplex (rez)|(0,0,0,0,0,1,1)√2142134433603920252084084
style="text-align:center; background:#f0e0e0;"

!3

|{{CDD|node|4|node|3|node|3|node|3|node_1|3|node|3|node}}
t2{3,3,3,3,3,4}

Birectified 7-orthoplex (barz)|(0,0,0,0,1,1,1)√2142142860481064089603360280
style="text-align:center; background:#e0f0e0;"

!4

|{{CDD|node|4|node|3|node|3|node_1|3|node|3|node|3|node}}
t3{4,3,3,3,3,3}

Trirectified 7-cube (sez)|(0,0,0,1,1,1,1)√21421428632814560156806720560
style="text-align:center; background:#e0e0f0;"

!5

|{{CDD|node|4|node|3|node_1|3|node|3|node|3|node|3|node}}
t2{4,3,3,3,3,3}

Birectified 7-cube (bersa)|(0,0,1,1,1,1,1)√21421428565611760134406720672
style="text-align:center; background:#e0e0f0;"

!6

|{{CDD|node|4|node_1|3|node|3|node|3|node|3|node|3|node}}
t1{4,3,3,3,3,3}

Rectified 7-cube (rasa)|(0,1,1,1,1,1,1)√21429802968504051522688448
style="text-align:center; background:#e0e0f0;"

!7

|{{CDD|node_1|4|node|3|node|3|node|3|node|3|node|3|node}}
t0{4,3,3,3,3,3}

7-cube (hept)|(0,0,0,0,0,0,0)√2 + (1,1,1,1,1,1,1)1484280560672448128
style="text-align:center; background:#f0e0e0;"

!8

|{{CDD|node|4|node|3|node|3|node|3|node|3|node_1|3|node_1}}
t0,1{3,3,3,3,3,4}

Truncated 7-orthoplex (Taz)|(0,0,0,0,0,1,2)√21421344336047602520924168
style="text-align:center; background:#f0e0e0;"

!9

|{{CDD|node|4|node|3|node|3|node|3|node_1|3|node|3|node_1}}
t0,2{3,3,3,3,3,4}

Cantellated 7-orthoplex (Sarz)|(0,0,0,0,1,1,2)√222642001545624080193207560840
style="text-align:center; background:#f0e0e0;"

!10

|{{CDD|node|4|node|3|node|3|node|3|node_1|3|node_1|3|node}}
t1,2{3,3,3,3,3,4}

Bitruncated 7-orthoplex (Botaz)|(0,0,0,0,1,2,2)√24200840
style="text-align:center; background:#f0e0e0;"

!11

|{{CDD|node|4|node|3|node|3|node_1|3|node|3|node|3|node_1}}
t0,3{3,3,3,3,3,4}

Runcinated 7-orthoplex (Spaz)|(0,0,0,1,1,1,2)√2235202240
style="text-align:center; background:#f0e0e0;"

!12

|{{CDD|node|4|node|3|node|3|node_1|3|node|3|node_1|3|node}}
t1,3{3,3,3,3,3,4}

Bicantellated 7-orthoplex (Sebraz)|(0,0,0,1,1,2,2)√2268803360
style="text-align:center; background:#f0e0e0;"

!13

|{{CDD|node|4|node|3|node|3|node_1|3|node_1|3|node|3|node}}
t2,3{3,3,3,3,3,4}

Tritruncated 7-orthoplex (Totaz)|(0,0,0,1,2,2,2)√2100802240
style="text-align:center; background:#f0e0e0;"

!14

|{{CDD|node|4|node|3|node_1|3|node|3|node|3|node|3|node_1}}
t0,4{3,3,3,3,3,4}

Stericated 7-orthoplex (Scaz)|(0,0,1,1,1,1,2)√2336003360
style="text-align:center; background:#f0e0e0;"

!15

|{{CDD|node|4|node|3|node_1|3|node|3|node|3|node_1|3|node}}
t1,4{3,3,3,3,3,4}

Biruncinated 7-orthoplex (Sibpaz)|(0,0,1,1,1,2,2)√2604806720
style="text-align:center; background:#e0f0e0;"

!16

|{{CDD|node|4|node|3|node_1|3|node|3|node_1|3|node|3|node}}
t2,4{4,3,3,3,3,3}

Tricantellated 7-cube (Strasaz)|(0,0,1,1,2,2,2)√2470406720
style="text-align:center; background:#e0e0f0;"

!17

|{{CDD|node|4|node|3|node_1|3|node_1|3|node|3|node|3|node}}
t2,3{4,3,3,3,3,3}

Tritruncated 7-cube (Tatsa)|(0,0,1,2,2,2,2)√2134403360
style="text-align:center; background:#f0e0e0;"

!18

|{{CDD|node|4|node_1|3|node|3|node|3|node|3|node|3|node_1}}
t0,5{3,3,3,3,3,4}

Pentellated 7-orthoplex (Staz)|(0,1,1,1,1,1,2)√2201602688
style="text-align:center; background:#e0f0e0;"

!19

|{{CDD|node|4|node_1|3|node|3|node|3|node|3|node_1|3|node}}
t1,5{4,3,3,3,3,3}

Bistericated 7-cube (Sabcosaz)|(0,1,1,1,1,2,2)√2537606720
style="text-align:center; background:#e0e0f0;"

!20

|{{CDD|node|4|node_1|3|node|3|node|3|node_1|3|node|3|node}}
t1,4{4,3,3,3,3,3}

Biruncinated 7-cube (Sibposa)|(0,1,1,1,2,2,2)√2672008960
style="text-align:center; background:#e0e0f0;"

!21

|{{CDD|node|4|node_1|3|node|3|node_1|3|node|3|node|3|node}}
t1,3{4,3,3,3,3,3}

Bicantellated 7-cube (Sibrosa)|(0,1,1,2,2,2,2)√2403206720
style="text-align:center; background:#e0e0f0;"

!22

|{{CDD|node|4|node_1|3|node_1|3|node|3|node|3|node|3|node}}
t1,2{4,3,3,3,3,3}

Bitruncated 7-cube (Betsa)|(0,1,2,2,2,2,2)√294082688
style="text-align:center; background:#e0f0e0;"

!23

|{{CDD|node_1|4|node|3|node|3|node|3|node|3|node|3|node_1}}
t0,6{4,3,3,3,3,3}

Hexicated 7-cube (Supposaz)|(0,0,0,0,0,0,1)√2 + (1,1,1,1,1,1,1)5376896
style="text-align:center; background:#e0e0f0;"

!24

|{{CDD|node_1|4|node|3|node|3|node|3|node|3|node_1|3|node}}
t0,5{4,3,3,3,3,3}

Pentellated 7-cube (Stesa)|(0,0,0,0,0,1,1)√2 + (1,1,1,1,1,1,1)201602688
style="text-align:center; background:#e0e0f0;"

!25

|{{CDD|node_1|4|node|3|node|3|node|3|node_1|3|node|3|node}}
t0,4{4,3,3,3,3,3}

Stericated 7-cube (Scosa)|(0,0,0,0,1,1,1)√2 + (1,1,1,1,1,1,1)358404480
style="text-align:center; background:#e0e0f0;"

!26

|{{CDD|node_1|4|node|3|node|3|node_1|3|node|3|node|3|node}}
t0,3{4,3,3,3,3,3}

Runcinated 7-cube (Spesa)|(0,0,0,1,1,1,1)√2 + (1,1,1,1,1,1,1)336004480
style="text-align:center; background:#e0e0f0;"

!27

|{{CDD|node_1|4|node|3|node_1|3|node|3|node|3|node|3|node}}
t0,2{4,3,3,3,3,3}

Cantellated 7-cube (Sersa)|(0,0,1,1,1,1,1)√2 + (1,1,1,1,1,1,1)161282688
style="text-align:center; background:#e0e0f0;"

!28

|{{CDD|node_1|4|node_1|3|node|3|node|3|node|3|node|3|node}}
t0,1{4,3,3,3,3,3}

Truncated 7-cube (Tasa)|(0,1,1,1,1,1,1)√2 + (1,1,1,1,1,1,1)1429802968504051523136896
style="text-align:center; background:#f0e0e0;"

!29

|{{CDD|node|4|node|3|node|3|node|3|node_1|3|node_1|3|node_1}}
t0,1,2{3,3,3,3,3,4}

Cantitruncated 7-orthoplex (Garz)|(0,1,2,3,3,3,3)√284001680
style="text-align:center; background:#f0e0e0;"

!30

|{{CDD|node|4|node|3|node|3|node_1|3|node|3|node_1|3|node_1}}
t0,1,3{3,3,3,3,3,4}

Runcitruncated 7-orthoplex (Potaz)|(0,1,2,2,3,3,3)√2504006720
style="text-align:center; background:#f0e0e0;"

!31

|{{CDD|node|4|node|3|node|3|node_1|3|node_1|3|node|3|node_1}}
t0,2,3{3,3,3,3,3,4}

Runcicantellated 7-orthoplex (Parz)|(0,1,1,2,3,3,3)√2336006720
style="text-align:center; background:#f0e0e0;"

!32

|{{CDD|node|4|node|3|node|3|node_1|3|node_1|3|node_1|3|node}}
t1,2,3{3,3,3,3,3,4}

Bicantitruncated 7-orthoplex (Gebraz)|(0,0,1,2,3,3,3)√2302406720
style="text-align:center; background:#f0e0e0;"

!33

|{{CDD|node|4|node|3|node_1|3|node|3|node|3|node_1|3|node_1}}
t0,1,4{3,3,3,3,3,4}

Steritruncated 7-orthoplex (Catz)|(0,0,1,1,1,2,3)√210752013440
style="text-align:center; background:#f0e0e0;"

!34

|{{CDD|node|4|node|3|node_1|3|node|3|node_1|3|node|3|node_1}}
t0,2,4{3,3,3,3,3,4}

Stericantellated 7-orthoplex (Craze)|(0,0,1,1,2,2,3)√214112020160
style="text-align:center; background:#f0e0e0;"

!35

|{{CDD|node|4|node|3|node_1|3|node|3|node_1|3|node_1|3|node}}
t1,2,4{3,3,3,3,3,4}

Biruncitruncated 7-orthoplex (Baptize)|(0,0,1,1,2,3,3)√212096020160
style="text-align:center; background:#f0e0e0;"

!36

|{{CDD|node|4|node|3|node_1|3|node_1|3|node|3|node|3|node_1}}
t0,3,4{3,3,3,3,3,4}

Steriruncinated 7-orthoplex (Copaz)|(0,1,1,1,2,3,3)√26720013440
style="text-align:center; background:#f0e0e0;"

!37

|{{CDD|node|4|node|3|node_1|3|node_1|3|node|3|node_1|3|node}}
t1,3,4{3,3,3,3,3,4}

Biruncicantellated 7-orthoplex (Boparz)|(0,0,1,2,2,3,3)√210080020160
style="text-align:center; background:#e0f0e0;"

!38

|{{CDD|node|4|node|3|node_1|3|node_1|3|node_1|3|node|3|node}}
t2,3,4{4,3,3,3,3,3}

Tricantitruncated 7-cube (Gotrasaz)|(0,0,0,1,2,3,3)√25376013440
style="text-align:center; background:#f0e0e0;"

!39

|{{CDD|node|4|node_1|3|node|3|node|3|node|3|node_1|3|node_1}}
t0,1,5{3,3,3,3,3,4}

Pentitruncated 7-orthoplex (Tetaz)|(0,1,1,1,1,2,3)√28736013440
style="text-align:center; background:#f0e0e0;"

!40

|{{CDD|node|4|node_1|3|node|3|node|3|node_1|3|node|3|node_1}}
t0,2,5{3,3,3,3,3,4}

Penticantellated 7-orthoplex (Teroz)|(0,1,1,1,2,2,3)√218816026880
style="text-align:center; background:#f0e0e0;"

!41

|{{CDD|node|4|node_1|3|node|3|node|3|node_1|3|node_1|3|node}}
t1,2,5{3,3,3,3,3,4}

Bisteritruncated 7-orthoplex (Boctaz)|(0,1,1,1,2,3,3)√214784026880
style="text-align:center; background:#f0e0e0;"

!42

|{{CDD|node|4|node_1|3|node|3|node_1|3|node|3|node|3|node_1}}
t0,3,5{3,3,3,3,3,4}

Pentiruncinated 7-orthoplex (Topaz)|(0,1,1,2,2,2,3)√217472026880
style="text-align:center; background:#e0f0e0;"

!43

|{{CDD|node|4|node_1|3|node|3|node_1|3|node|3|node_1|3|node}}
t1,3,5{4,3,3,3,3,3}

Bistericantellated 7-cube (Bacresaz)|(0,1,1,2,2,3,3)√224192040320
style="text-align:center; background:#e0e0f0;"

!44

|{{CDD|node|4|node_1|3|node|3|node_1|3|node_1|3|node|3|node}}
t1,3,4{4,3,3,3,3,3}

Biruncicantellated 7-cube (Bopresa)|(0,1,1,2,3,3,3)√212096026880
style="text-align:center; background:#f0e0e0;"

!45

|{{CDD|node|4|node_1|3|node_1|3|node|3|node|3|node|3|node_1}}
t0,4,5{3,3,3,3,3,4}

Pentistericated 7-orthoplex (Tocaz)|(0,1,2,2,2,2,3)√26720013440
style="text-align:center; background:#e0e0f0;"

!46

|{{CDD|node|4|node_1|3|node_1|3|node|3|node|3|node_1|3|node}}
t1,2,5{4,3,3,3,3,3}

Bisteritruncated 7-cube (Bactasa)|(0,1,2,2,2,3,3)√214784026880
style="text-align:center; background:#e0e0f0;"

!47

|{{CDD|node|4|node_1|3|node_1|3|node|3|node_1|3|node|3|node}}
t1,2,4{4,3,3,3,3,3}

Biruncitruncated 7-cube (Biptesa)|(0,1,2,2,3,3,3)√213440026880
style="text-align:center; background:#e0e0f0;"

!48

|{{CDD|node|4|node_1|3|node_1|3|node_1|3|node|3|node|3|node}}
t1,2,3{4,3,3,3,3,3}

Bicantitruncated 7-cube (Gibrosa)|(0,1,2,3,3,3,3)√24704013440
style="text-align:center; background:#f0e0e0;"

!49

|{{CDD|node_1|4|node|3|node|3|node|3|node|3|node_1|3|node_1}}
t0,1,6{3,3,3,3,3,4}

Hexitruncated 7-orthoplex (Putaz)|(0,0,0,0,0,1,2)√2 + (1,1,1,1,1,1,1)295685376
style="text-align:center; background:#f0e0e0;"

!50

|{{CDD|node_1|4|node|3|node|3|node|3|node_1|3|node|3|node_1}}
t0,2,6{3,3,3,3,3,4}

Hexicantellated 7-orthoplex (Puraz)|(0,0,0,0,1,1,2)√2 + (1,1,1,1,1,1,1)9408013440
style="text-align:center; background:#e0e0f0;"

!51

|{{CDD|node_1|4|node|3|node|3|node|3|node_1|3|node_1|3|node}}
t0,4,5{4,3,3,3,3,3}

Pentistericated 7-cube (Tacosa)|(0,0,0,0,1,2,2)√2 + (1,1,1,1,1,1,1)6720013440
style="text-align:center; background:#e0f0e0;"

!52

|{{CDD|node_1|4|node|3|node|3|node_1|3|node|3|node|3|node_1}}
t0,3,6{4,3,3,3,3,3}

Hexiruncinated 7-cube (Pupsez)|(0,0,0,1,1,1,2)√2 + (1,1,1,1,1,1,1)13440017920
style="text-align:center; background:#e0e0f0;"

!53

|{{CDD|node_1|4|node|3|node|3|node_1|3|node|3|node_1|3|node}}
t0,3,5{4,3,3,3,3,3}

Pentiruncinated 7-cube (Tapsa)|(0,0,0,1,1,2,2)√2 + (1,1,1,1,1,1,1)17472026880
style="text-align:center; background:#e0e0f0;"

!54

|{{CDD|node_1|4|node|3|node|3|node_1|3|node_1|3|node|3|node}}
t0,3,4{4,3,3,3,3,3}

Steriruncinated 7-cube (Capsa)|(0,0,0,1,2,2,2)√2 + (1,1,1,1,1,1,1)8064017920
style="text-align:center; background:#e0e0f0;"

!55

|{{CDD|node_1|4|node|3|node_1|3|node|3|node|3|node|3|node_1}}
t0,2,6{4,3,3,3,3,3}

Hexicantellated 7-cube (Purosa)|(0,0,1,1,1,1,2)√2 + (1,1,1,1,1,1,1)9408013440
style="text-align:center; background:#e0e0f0;"

!56

|{{CDD|node_1|4|node|3|node_1|3|node|3|node|3|node_1|3|node}}
t0,2,5{4,3,3,3,3,3}

Penticantellated 7-cube (Tersa)|(0,0,1,1,1,2,2)√2 + (1,1,1,1,1,1,1)18816026880
style="text-align:center; background:#e0e0f0;"

!57

|{{CDD|node_1|4|node|3|node_1|3|node|3|node_1|3|node|3|node}}
t0,2,4{4,3,3,3,3,3}

Stericantellated 7-cube (Carsa)|(0,0,1,1,2,2,2)√2 + (1,1,1,1,1,1,1)16128026880
style="text-align:center; background:#e0e0f0;"

!58

|{{CDD|node_1|4|node|3|node_1|3|node_1|3|node|3|node|3|node}}
t0,2,3{4,3,3,3,3,3}

Runcicantellated 7-cube (Parsa)|(0,0,1,2,2,2,2)√2 + (1,1,1,1,1,1,1)5376013440
style="text-align:center; background:#e0e0f0;"

!59

|{{CDD|node_1|4|node_1|3|node|3|node|3|node|3|node|3|node_1}}
t0,1,6{4,3,3,3,3,3}

Hexitruncated 7-cube (Putsa)|(0,1,1,1,1,1,2)√2 + (1,1,1,1,1,1,1)295685376
style="text-align:center; background:#e0e0f0;"

!60

|{{CDD|node_1|4|node_1|3|node|3|node|3|node|3|node_1|3|node}}
t0,1,5{4,3,3,3,3,3}

Pentitruncated 7-cube (Tetsa)|(0,1,1,1,1,2,2)√2 + (1,1,1,1,1,1,1)8736013440
style="text-align:center; background:#e0e0f0;"

!61

|{{CDD|node_1|4|node_1|3|node|3|node|3|node_1|3|node|3|node}}
t0,1,4{4,3,3,3,3,3}

Steritruncated 7-cube (Catsa)|(0,1,1,1,2,2,2)√2 + (1,1,1,1,1,1,1)11648017920
style="text-align:center; background:#e0e0f0;"

!62

|{{CDD|node_1|4|node_1|3|node|3|node_1|3|node|3|node|3|node}}
t0,1,3{4,3,3,3,3,3}

Runcitruncated 7-cube (Petsa)|(0,1,1,2,2,2,2)√2 + (1,1,1,1,1,1,1)7392013440
style="text-align:center; background:#e0e0f0;"

!63

|{{CDD|node_1|4|node_1|3|node_1|3|node|3|node|3|node|3|node}}
t0,1,2{4,3,3,3,3,3}

Cantitruncated 7-cube (Gersa)|(0,1,2,2,2,2,2)√2 + (1,1,1,1,1,1,1)188165376
style="text-align:center; background:#f0e0e0;"

!64

|{{CDD|node|4|node|3|node|3|node_1|3|node_1|3|node_1|3|node_1}}
t0,1,2,3{3,3,3,3,3,4}

Runcicantitruncated 7-orthoplex (Gopaz)|(0,1,2,3,4,4,4)√26048013440
style="text-align:center; background:#f0e0e0;"

!65

|{{CDD|node|4|node|3|node_1|3|node|3|node_1|3|node_1|3|node_1}}
t0,1,2,4{3,3,3,3,3,4}

Stericantitruncated 7-orthoplex (Cogarz)|(0,0,1,1,2,3,4)√224192040320
style="text-align:center; background:#f0e0e0;"

!66

|{{CDD|node|4|node|3|node_1|3|node_1|3|node|3|node_1|3|node_1}}
t0,1,3,4{3,3,3,3,3,4}

Steriruncitruncated 7-orthoplex (Captaz)|(0,0,1,2,2,3,4)√218144040320
style="text-align:center; background:#f0e0e0;"

!67

|{{CDD|node|4|node|3|node_1|3|node_1|3|node_1|3|node|3|node_1}}
t0,2,3,4{3,3,3,3,3,4}

Steriruncicantellated 7-orthoplex (Caparz)|(0,0,1,2,3,3,4)√218144040320
style="text-align:center; background:#f0e0e0;"

!68

|{{CDD|node|4|node|3|node_1|3|node_1|3|node_1|3|node_1|3|node}}
t1,2,3,4{3,3,3,3,3,4}

Biruncicantitruncated 7-orthoplex (Gibpaz)|(0,0,1,2,3,4,4)√216128040320
style="text-align:center; background:#f0e0e0;"

!69

|{{CDD|node|4|node_1|3|node|3|node|3|node_1|3|node_1|3|node_1}}
t0,1,2,5{3,3,3,3,3,4}

Penticantitruncated 7-orthoplex (Tograz)|(0,1,1,1,2,3,4)√229568053760
style="text-align:center; background:#f0e0e0;"

!70

|{{CDD|node|4|node_1|3|node|3|node_1|3|node|3|node_1|3|node_1}}
t0,1,3,5{3,3,3,3,3,4}

Pentiruncitruncated 7-orthoplex (Toptaz)|(0,1,1,2,2,3,4)√244352080640
style="text-align:center; background:#f0e0e0;"

!71

|{{CDD|node|4|node_1|3|node|3|node_1|3|node_1|3|node|3|node_1}}
t0,2,3,5{3,3,3,3,3,4}

Pentiruncicantellated 7-orthoplex (Toparz)|(0,1,1,2,3,3,4)√240320080640
style="text-align:center; background:#f0e0e0;"

!72

|{{CDD|node|4|node_1|3|node|3|node_1|3|node_1|3|node_1|3|node}}
t1,2,3,5{3,3,3,3,3,4}

Bistericantitruncated 7-orthoplex (Becogarz)|(0,1,1,2,3,4,4)√236288080640
style="text-align:center; background:#f0e0e0;"

!73

|{{CDD|node|4|node_1|3|node_1|3|node|3|node|3|node_1|3|node_1}}
t0,1,4,5{3,3,3,3,3,4}

Pentisteritruncated 7-orthoplex (Tacotaz)|(0,1,2,2,2,3,4)√224192053760
style="text-align:center; background:#f0e0e0;"

!74

|{{CDD|node|4|node_1|3|node_1|3|node|3|node_1|3|node|3|node_1}}
t0,2,4,5{3,3,3,3,3,4}

Pentistericantellated 7-orthoplex (Tocarz)|(0,1,2,2,3,3,4)√240320080640
style="text-align:center; background:#e0f0e0;"

!75

|{{CDD|node|4|node_1|3|node_1|3|node|3|node_1|3|node_1|3|node}}
t1,2,4,5{4,3,3,3,3,3}

Bisteriruncitruncated 7-cube (Bocaptosaz)|(0,1,2,2,3,4,4)√232256080640
style="text-align:center; background:#f0e0e0;"

!76

|{{CDD|node|4|node_1|3|node_1|3|node_1|3|node|3|node|3|node_1}}
t0,3,4,5{3,3,3,3,3,4}

Pentisteriruncinated 7-orthoplex (Tecpaz)|(0,1,2,3,3,3,4)√224192053760
style="text-align:center; background:#e0e0f0;"

!77

|{{CDD|node|4|node_1|3|node_1|3|node_1|3|node|3|node_1|3|node}}
t1,2,3,5{4,3,3,3,3,3}

Bistericantitruncated 7-cube (Becgresa)|(0,1,2,3,3,4,4)√236288080640
style="text-align:center; background:#e0e0f0;"

!78

|{{CDD|node|4|node_1|3|node_1|3|node_1|3|node_1|3|node|3|node}}
t1,2,3,4{4,3,3,3,3,3}

Biruncicantitruncated 7-cube (Gibposa)|(0,1,2,3,4,4,4)√218816053760
style="text-align:center; background:#f0e0e0;"

!79

|{{CDD|node_1|4|node|3|node|3|node|3|node_1|3|node_1|3|node_1}}
t0,1,2,6{3,3,3,3,3,4}

Hexicantitruncated 7-orthoplex (Pugarez)|(0,0,0,0,1,2,3)√2 + (1,1,1,1,1,1,1)13440026880
style="text-align:center; background:#f0e0e0;"

!80

|{{CDD|node_1|4|node|3|node|3|node_1|3|node|3|node_1|3|node_1}}
t0,1,3,6{3,3,3,3,3,4}

Hexiruncitruncated 7-orthoplex (Papataz)|(0,0,0,1,1,2,3)√2 + (1,1,1,1,1,1,1)32256053760
style="text-align:center; background:#f0e0e0;"

!81

|{{CDD|node_1|4|node|3|node|3|node_1|3|node_1|3|node|3|node_1}}
t0,2,3,6{3,3,3,3,3,4}

Hexiruncicantellated 7-orthoplex (Puparez)|(0,0,0,1,2,2,3)√2 + (1,1,1,1,1,1,1)26880053760
style="text-align:center; background:#e0e0f0;"

!82

|{{CDD|node_1|4|node|3|node|3|node_1|3|node_1|3|node_1|3|node}}
t0,3,4,5{4,3,3,3,3,3}

Pentisteriruncinated 7-cube (Tecpasa)|(0,0,0,1,2,3,3)√2 + (1,1,1,1,1,1,1)24192053760
style="text-align:center; background:#f0e0e0;"

!83

|{{CDD|node_1|4|node|3|node_1|3|node|3|node|3|node_1|3|node_1}}
t0,1,4,6{3,3,3,3,3,4}

Hexisteritruncated 7-orthoplex (Pucotaz)|(0,0,1,1,1,2,3)√2 + (1,1,1,1,1,1,1)32256053760
style="text-align:center; background:#e0f0e0;"

!84

|{{CDD|node_1|4|node|3|node_1|3|node|3|node_1|3|node|3|node_1}}
t0,2,4,6{4,3,3,3,3,3}

Hexistericantellated 7-cube (Pucrosaz)|(0,0,1,1,2,2,3)√2 + (1,1,1,1,1,1,1)48384080640
style="text-align:center; background:#e0e0f0;"

!85

|{{CDD|node_1|4|node|3|node_1|3|node|3|node_1|3|node_1|3|node}}
t0,2,4,5{4,3,3,3,3,3}

Pentistericantellated 7-cube (Tecresa)|(0,0,1,1,2,3,3)√2 + (1,1,1,1,1,1,1)40320080640
style="text-align:center; background:#e0e0f0;"

!86

|{{CDD|node_1|4|node|3|node_1|3|node_1|3|node|3|node|3|node_1}}
t0,2,3,6{4,3,3,3,3,3}

Hexiruncicantellated 7-cube (Pupresa)|(0,0,1,2,2,2,3)√2 + (1,1,1,1,1,1,1)26880053760
style="text-align:center; background:#e0e0f0;"

!87

|{{CDD|node_1|4|node|3|node_1|3|node_1|3|node|3|node_1|3|node}}
t0,2,3,5{4,3,3,3,3,3}

Pentiruncicantellated 7-cube (Topresa)|(0,0,1,2,2,3,3)√2 + (1,1,1,1,1,1,1)40320080640
style="text-align:center; background:#e0e0f0;"

!88

|{{CDD|node_1|4|node|3|node_1|3|node_1|3|node_1|3|node|3|node}}
t0,2,3,4{4,3,3,3,3,3}

Steriruncicantellated 7-cube (Copresa)|(0,0,1,2,3,3,3)√2 + (1,1,1,1,1,1,1)21504053760
style="text-align:center; background:#e0f0e0;"

!89

|{{CDD|node_1|4|node_1|3|node|3|node|3|node|3|node_1|3|node_1}}
t0,1,5,6{4,3,3,3,3,3}

Hexipentitruncated 7-cube (Putatosez)|(0,1,1,1,1,2,3)√2 + (1,1,1,1,1,1,1)13440026880
style="text-align:center; background:#e0e0f0;"

!90

|{{CDD|node_1|4|node_1|3|node|3|node|3|node_1|3|node|3|node_1}}
t0,1,4,6{4,3,3,3,3,3}

Hexisteritruncated 7-cube (Pacutsa)|(0,1,1,1,2,2,3)√2 + (1,1,1,1,1,1,1)32256053760
style="text-align:center; background:#e0e0f0;"

!91

|{{CDD|node_1|4|node_1|3|node|3|node|3|node_1|3|node_1|3|node}}
t0,1,4,5{4,3,3,3,3,3}

Pentisteritruncated 7-cube (Tecatsa)|(0,1,1,1,2,3,3)√2 + (1,1,1,1,1,1,1)24192053760
style="text-align:center; background:#e0e0f0;"

!92

|{{CDD|node_1|4|node_1|3|node|3|node_1|3|node|3|node|3|node_1}}
t0,1,3,6{4,3,3,3,3,3}

Hexiruncitruncated 7-cube (Pupetsa)|(0,1,1,2,2,2,3)√2 + (1,1,1,1,1,1,1)32256053760
style="text-align:center; background:#e0e0f0;"

!93

|{{CDD|node_1|4|node_1|3|node|3|node_1|3|node|3|node_1|3|node}}
t0,1,3,5{4,3,3,3,3,3}

Pentiruncitruncated 7-cube (Toptosa)|(0,1,1,2,2,3,3)√2 + (1,1,1,1,1,1,1)44352080640
style="text-align:center; background:#e0e0f0;"

!94

|{{CDD|node_1|4|node_1|3|node|3|node_1|3|node_1|3|node|3|node}}
t0,1,3,4{4,3,3,3,3,3}

Steriruncitruncated 7-cube (Captesa)|(0,1,1,2,3,3,3)√2 + (1,1,1,1,1,1,1)21504053760
style="text-align:center; background:#e0e0f0;"

!95

|{{CDD|node_1|4|node_1|3|node_1|3|node|3|node|3|node|3|node_1}}
t0,1,2,6{4,3,3,3,3,3}

Hexicantitruncated 7-cube (Pugrosa)|(0,1,2,2,2,2,3)√2 + (1,1,1,1,1,1,1)13440026880
style="text-align:center; background:#e0e0f0;"

!96

|{{CDD|node_1|4|node_1|3|node_1|3|node|3|node|3|node_1|3|node}}
t0,1,2,5{4,3,3,3,3,3}

Penticantitruncated 7-cube (Togresa)|(0,1,2,2,2,3,3)√2 + (1,1,1,1,1,1,1)29568053760
style="text-align:center; background:#e0e0f0;"

!97

|{{CDD|node_1|4|node_1|3|node_1|3|node|3|node_1|3|node|3|node}}
t0,1,2,4{4,3,3,3,3,3}

Stericantitruncated 7-cube (Cogarsa)|(0,1,2,2,3,3,3)√2 + (1,1,1,1,1,1,1)26880053760
style="text-align:center; background:#e0e0f0;"

!98

|{{CDD|node_1|4|node_1|3|node_1|3|node_1|3|node|3|node|3|node}}
t0,1,2,3{4,3,3,3,3,3}

Runcicantitruncated 7-cube (Gapsa)|(0,1,2,3,3,3,3)√2 + (1,1,1,1,1,1,1)9408026880
style="text-align:center; background:#f0e0e0;"

!99

|{{CDD|node|4|node|3|node_1|3|node_1|3|node_1|3|node_1|3|node_1}}
t0,1,2,3,4{3,3,3,3,3,4}

Steriruncicantitruncated 7-orthoplex (Gocaz)|(0,0,1,2,3,4,5)√232256080640
style="text-align:center; background:#f0e0e0;"

!100

|{{CDD|node|4|node_1|3|node|3|node_1|3|node_1|3|node_1|3|node_1}}
t0,1,2,3,5{3,3,3,3,3,4}

Pentiruncicantitruncated 7-orthoplex (Tegopaz)|(0,1,1,2,3,4,5)√2725760161280
style="text-align:center; background:#f0e0e0;"

!101

|{{CDD|node|4|node_1|3|node_1|3|node|3|node_1|3|node_1|3|node_1}}
t0,1,2,4,5{3,3,3,3,3,4}

Pentistericantitruncated 7-orthoplex (Tecagraz)|(0,1,2,2,3,4,5)√2645120161280
style="text-align:center; background:#f0e0e0;"

!102

|{{CDD|node|4|node_1|3|node_1|3|node_1|3|node|3|node_1|3|node_1}}
t0,1,3,4,5{3,3,3,3,3,4}

Pentisteriruncitruncated 7-orthoplex (Tecpotaz)|(0,1,2,3,3,4,5)√2645120161280
style="text-align:center; background:#f0e0e0;"

!103

|{{CDD|node|4|node_1|3|node_1|3|node_1|3|node_1|3|node|3|node_1}}
t0,2,3,4,5{3,3,3,3,3,4}

Pentisteriruncicantellated 7-orthoplex (Tacparez)|(0,1,2,3,4,4,5)√2645120161280
style="text-align:center; background:#e0f0e0;"

!104

|{{CDD|node|4|node_1|3|node_1|3|node_1|3|node_1|3|node_1|3|node}}
t1,2,3,4,5{4,3,3,3,3,3}

Bisteriruncicantitruncated 7-cube (Gabcosaz)|(0,1,2,3,4,5,5)√2564480161280
style="text-align:center; background:#f0e0e0;"

!105

|{{CDD|node_1|4|node|3|node|3|node_1|3|node_1|3|node_1|3|node_1}}
t0,1,2,3,6{3,3,3,3,3,4}

Hexiruncicantitruncated 7-orthoplex (Pugopaz)|(0,0,0,1,2,3,4)√2 + (1,1,1,1,1,1,1)483840107520
style="text-align:center; background:#f0e0e0;"

!106

|{{CDD|node_1|4|node|3|node_1|3|node|3|node_1|3|node_1|3|node_1}}
t0,1,2,4,6{3,3,3,3,3,4}

Hexistericantitruncated 7-orthoplex (Pucagraz)|(0,0,1,1,2,3,4)√2 + (1,1,1,1,1,1,1)806400161280
style="text-align:center; background:#f0e0e0;"

!107

|{{CDD|node_1|4|node|3|node_1|3|node_1|3|node|3|node_1|3|node_1}}
t0,1,3,4,6{3,3,3,3,3,4}

Hexisteriruncitruncated 7-orthoplex (Pucpotaz)|(0,0,1,2,2,3,4)√2 + (1,1,1,1,1,1,1)725760161280
style="text-align:center; background:#e0f0e0;"

!108

|{{CDD|node_1|4|node|3|node_1|3|node_1|3|node_1|3|node|3|node_1}}
t0,2,3,4,6{4,3,3,3,3,3}

Hexisteriruncicantellated 7-cube (Pucprosaz)|(0,0,1,2,3,3,4)√2 + (1,1,1,1,1,1,1)725760161280
style="text-align:center; background:#e0e0f0;"

!109

|{{CDD|node_1|4|node|3|node_1|3|node_1|3|node_1|3|node_1|3|node}}
t0,2,3,4,5{4,3,3,3,3,3}

Pentisteriruncicantellated 7-cube (Tocpresa)|(0,0,1,2,3,4,4)√2 + (1,1,1,1,1,1,1)645120161280
style="text-align:center; background:#f0e0e0;"

!110

|{{CDD|node_1|4|node_1|3|node|3|node|3|node_1|3|node_1|3|node_1}}
t0,1,2,5,6{3,3,3,3,3,4}

Hexipenticantitruncated 7-orthoplex (Putegraz)|(0,1,1,1,2,3,4)√2 + (1,1,1,1,1,1,1)483840107520
style="text-align:center; background:#e0f0e0;"

!111

|{{CDD|node_1|4|node_1|3|node|3|node_1|3|node|3|node_1|3|node_1}}
t0,1,3,5,6{4,3,3,3,3,3}

Hexipentiruncitruncated 7-cube (Putpetsaz)|(0,1,1,2,2,3,4)√2 + (1,1,1,1,1,1,1)806400161280
style="text-align:center; background:#e0e0f0;"

!112

|{{CDD|node_1|4|node_1|3|node|3|node_1|3|node_1|3|node|3|node_1}}
t0,1,3,4,6{4,3,3,3,3,3}

Hexisteriruncitruncated 7-cube (Pucpetsa)|(0,1,1,2,3,3,4)√2 + (1,1,1,1,1,1,1)725760161280
style="text-align:center; background:#e0e0f0;"

!113

|{{CDD|node_1|4|node_1|3|node|3|node_1|3|node_1|3|node_1|3|node}}
t0,1,3,4,5{4,3,3,3,3,3}

Pentisteriruncitruncated 7-cube (Tecpetsa)|(0,1,1,2,3,4,4)√2 + (1,1,1,1,1,1,1)645120161280
style="text-align:center; background:#e0e0f0;"

!114

|{{CDD|node_1|4|node_1|3|node_1|3|node|3|node|3|node_1|3|node_1}}
t0,1,2,5,6{4,3,3,3,3,3}

Hexipenticantitruncated 7-cube (Putgresa)|(0,1,2,2,2,3,4)√2 + (1,1,1,1,1,1,1)483840107520
style="text-align:center; background:#e0e0f0;"

!115

|{{CDD|node_1|4|node_1|3|node_1|3|node|3|node_1|3|node|3|node_1}}
t0,1,2,4,6{4,3,3,3,3,3}

Hexistericantitruncated 7-cube (Pucagrosa)|(0,1,2,2,3,3,4)√2 + (1,1,1,1,1,1,1)806400161280
style="text-align:center; background:#e0e0f0;"

!116

|{{CDD|node_1|4|node_1|3|node_1|3|node|3|node_1|3|node_1|3|node}}
t0,1,2,4,5{4,3,3,3,3,3}

Pentistericantitruncated 7-cube (Tecgresa)|(0,1,2,2,3,4,4)√2 + (1,1,1,1,1,1,1)645120161280
style="text-align:center; background:#e0e0f0;"

!117

|{{CDD|node_1|4|node_1|3|node_1|3|node_1|3|node|3|node|3|node_1}}
t0,1,2,3,6{4,3,3,3,3,3}

Hexiruncicantitruncated 7-cube (Pugopsa)|(0,1,2,3,3,3,4)√2 + (1,1,1,1,1,1,1)483840107520
style="text-align:center; background:#e0e0f0;"

!118

|{{CDD|node_1|4|node_1|3|node_1|3|node_1|3|node|3|node_1|3|node}}
t0,1,2,3,5{4,3,3,3,3,3}

Pentiruncicantitruncated 7-cube (Togapsa)|(0,1,2,3,3,4,4)√2 + (1,1,1,1,1,1,1)725760161280
style="text-align:center; background:#e0e0f0;"

!119

|{{CDD|node_1|4|node_1|3|node_1|3|node_1|3|node_1|3|node|3|node}}
t0,1,2,3,4{4,3,3,3,3,3}

Steriruncicantitruncated 7-cube (Gacosa)|(0,1,2,3,4,4,4)√2 + (1,1,1,1,1,1,1)376320107520
style="text-align:center; background:#f0e0e0;"

!120

|{{CDD|node|4|node_1|3|node_1|3|node_1|3|node_1|3|node_1|3|node_1}}
t0,1,2,3,4,5{3,3,3,3,3,4}

Pentisteriruncicantitruncated 7-orthoplex (Gotaz)|(0,1,2,3,4,5,6)√21128960322560
style="text-align:center; background:#f0e0e0;"

!121

|{{CDD|node_1|4|node|3|node_1|3|node_1|3|node_1|3|node_1|3|node_1}}
t0,1,2,3,4,6{3,3,3,3,3,4}

Hexisteriruncicantitruncated 7-orthoplex (Pugacaz)|(0,0,1,2,3,4,5)√2 + (1,1,1,1,1,1,1)1290240322560
style="text-align:center; background:#f0e0e0;"

!122

|{{CDD|node_1|4|node_1|3|node|3|node_1|3|node_1|3|node_1|3|node_1}}
t0,1,2,3,5,6{3,3,3,3,3,4}

Hexipentiruncicantitruncated 7-orthoplex (Putgapaz)|(0,1,1,2,3,4,5)√2 + (1,1,1,1,1,1,1)1290240322560
style="text-align:center; background:#e0f0e0;"

!123

|{{CDD|node_1|4|node_1|3|node_1|3|node|3|node_1|3|node_1|3|node_1}}
t0,1,2,4,5,6{4,3,3,3,3,3}

Hexipentistericantitruncated 7-cube (Putcagrasaz)|(0,1,2,2,3,4,5)√2 + (1,1,1,1,1,1,1)1290240322560
style="text-align:center; background:#e0e0f0;"

!124

|{{CDD|node_1|4|node_1|3|node_1|3|node_1|3|node|3|node_1|3|node_1}}
t0,1,2,3,5,6{4,3,3,3,3,3}

Hexipentiruncicantitruncated 7-cube (Putgapsa)|(0,1,2,3,3,4,5)√2 + (1,1,1,1,1,1,1)1290240322560
style="text-align:center; background:#e0e0f0;"

!125

|{{CDD|node_1|4|node_1|3|node_1|3|node_1|3|node_1|3|node|3|node_1}}
t0,1,2,3,4,6{4,3,3,3,3,3}

Hexisteriruncicantitruncated 7-cube (Pugacasa)|(0,1,2,3,4,4,5)√2 + (1,1,1,1,1,1,1)1290240322560
style="text-align:center; background:#e0e0f0;"

!126

|{{CDD|node_1|4|node_1|3|node_1|3|node_1|3|node_1|3|node_1|3|node}}
t0,1,2,3,4,5{4,3,3,3,3,3}

Pentisteriruncicantitruncated 7-cube (Gotesa)|(0,1,2,3,4,5,5)√2 + (1,1,1,1,1,1,1)1128960322560
style="text-align:center; background:#e0f0e0;"

!127

|{{CDD|node_1|4|node_1|3|node_1|3|node_1|3|node_1|3|node_1|3|node_1}}
t0,1,2,3,4,5,6{4,3,3,3,3,3}

Omnitruncated 7-cube (Guposaz)|(0,1,2,3,4,5,6)√2 + (1,1,1,1,1,1,1)2257920645120

The D<sub>7</sub> family

The D7 family has symmetry of order 322560 (7 factorial x 26).

This family has 3×32−1=95 Wythoffian uniform polytopes, generated by marking one or more nodes of the D7 Coxeter-Dynkin diagram. Of these, 63 (2×32−1) are repeated from the B7 family and 32 are unique to this family, listed below. Bowers names and acronym are given for cross-referencing.

See also list of D7 polytopes for Coxeter plane graphs of these polytopes.

class="wikitable collapsible collapsed"

!colspan=12|D7 uniform polytopes

rowspan=2|#

!rowspan=2|Coxeter diagram

!rowspan=2|Names

!rowspan=2|Base point
(Alternately signed)

!colspan=7|Element counts

6||5||4||3||2||1||0
align=center

!1

{{CDD|nodes_10ru|split2|node|3|node|3|node|3|node|3|node}} = {{CDD|node_h1|4|node|3|node|3|node|3|node|3|node|3|node}}7-cube
demihepteract (hesa)
(1,1,1,1,1,1,1)7853216242800224067264
align=center

!2

{{CDD|nodes_10ru|split2|node_1|3|node|3|node|3|node|3|node}} = {{CDD|node_h1|4|node|3|node_1|3|node|3|node|3|node|3|node}}cantic 7-cube
truncated demihepteract (thesa)
(1,1,3,3,3,3,3)14214285656117601344073921344
align=center

!3

{{CDD|nodes_10ru|split2|node|3|node_1|3|node|3|node|3|node}} = {{CDD|node_h1|4|node|3|node|3|node_1|3|node|3|node|3|node}}runcic 7-cube
small rhombated demihepteract (sirhesa)
(1,1,1,3,3,3,3)168002240
align=center

!4

{{CDD|nodes_10ru|split2|node|3|node|3|node_1|3|node|3|node}} = {{CDD|node_h1|4|node|3|node|3|node|3|node_1|3|node|3|node}}steric 7-cube
small prismated demihepteract (sphosa)
(1,1,1,1,3,3,3)201602240
align=center

!5

{{CDD|nodes_10ru|split2|node|3|node|3|node|3|node_1|3|node}} = {{CDD|node_h1|4|node|3|node|3|node|3|node|3|node_1|3|node}}pentic 7-cube
small cellated demihepteract (sochesa)
(1,1,1,1,1,3,3)134401344
align=center

!6

{{CDD|nodes_10ru|split2|node|3|node|3|node|3|node|3|node_1}} = {{CDD|node_h1|4|node|3|node|3|node|3|node|3|node|3|node_1}}hexic 7-cube
small terated demihepteract (suthesa)
(1,1,1,1,1,1,3)4704448
align=center

!7

{{CDD|nodes_10ru|split2|node_1|3|node_1|3|node|3|node|3|node}} = {{CDD|node_h1|4|node|3|node_1|3|node_1|3|node|3|node|3|node}}runcicantic 7-cube
great rhombated demihepteract (Girhesa)
(1,1,3,5,5,5,5)235206720
align=center

!8

{{CDD|nodes_10ru|split2|node_1|3|node|3|node_1|3|node|3|node}} = {{CDD|node_h1|4|node|3|node_1|3|node|3|node_1|3|node|3|node}}stericantic 7-cube
prismatotruncated demihepteract (pothesa)
(1,1,3,3,5,5,5)7392013440
align=center

!9

{{CDD|nodes_10ru|split2|node|3|node_1|3|node_1|3|node|3|node}} = {{CDD|node_h1|4|node|3|node|3|node_1|3|node_1|3|node|3|node}}steriruncic 7-cube
prismatorhomated demihepteract (prohesa)
(1,1,1,3,5,5,5)403208960
align=center

!10

{{CDD|nodes_10ru|split2|node_1|3|node|3|node|3|node_1|3|node}} = {{CDD|node_h1|4|node|3|node_1|3|node|3|node|3|node_1|3|node}}penticantic 7-cube
cellitruncated demihepteract (cothesa)
(1,1,3,3,3,5,5)8736013440
align=center

!11

{{CDD|nodes_10ru|split2|node|3|node_1|3|node|3|node_1|3|node}} = {{CDD|node_h1|4|node|3|node|3|node_1|3|node|3|node_1|3|node}}pentiruncic 7-cube
cellirhombated demihepteract (crohesa)
(1,1,1,3,3,5,5)8736013440
align=center

!12

{{CDD|nodes_10ru|split2|node|3|node|3|node_1|3|node_1|3|node}} = {{CDD|node_h1|4|node|3|node|3|node|3|node_1|3|node_1|3|node}}pentisteric 7-cube
celliprismated demihepteract (caphesa)
(1,1,1,1,3,5,5)403206720
align=center

!13

{{CDD|nodes_10ru|split2|node_1|3|node|3|node|3|node|3|node_1}} = {{CDD|node_h1|4|node|3|node_1|3|node|3|node|3|node|3|node_1}}hexicantic 7-cube
tericantic demihepteract (tuthesa)
(1,1,3,3,3,3,5)436806720
align=center

!14

{{CDD|nodes_10ru|split2|node|3|node_1|3|node|3|node|3|node_1}} = {{CDD|node_h1|4|node|3|node|3|node_1|3|node|3|node|3|node_1}}hexiruncic 7-cube
terirhombated demihepteract (turhesa)
(1,1,1,3,3,3,5)672008960
align=center

!15

{{CDD|nodes_10ru|split2|node|3|node|3|node_1|3|node|3|node_1}} = {{CDD|node_h1|4|node|3|node|3|node|3|node_1|3|node|3|node_1}}hexisteric 7-cube
teriprismated demihepteract (tuphesa)
(1,1,1,1,3,3,5)537606720
align=center

!16

{{CDD|nodes_10ru|split2|node|3|node|3|node|3|node_1|3|node_1}} = {{CDD|node_h1|4|node|3|node|3|node|3|node|3|node_1|3|node_1}}hexipentic 7-cube
tericellated demihepteract (tuchesa)
(1,1,1,1,1,3,5)215042688
align=center

!17

{{CDD|nodes_10ru|split2|node_1|3|node_1|3|node_1|3|node|3|node}} = {{CDD|node_h1|4|node|3|node_1|3|node_1|3|node_1|3|node|3|node}}steriruncicantic 7-cube
great prismated demihepteract (Gephosa)
(1,1,3,5,7,7,7)9408026880
align=center

!18

{{CDD|nodes_10ru|split2|node_1|3|node_1|3|node|3|node_1|3|node}} = {{CDD|node_h1|4|node|3|node_1|3|node_1|3|node|3|node_1|3|node}}pentiruncicantic 7-cube
celligreatorhombated demihepteract (cagrohesa)
(1,1,3,5,5,7,7)18144040320
align=center

!19

{{CDD|nodes_10ru|split2|node_1|3|node|3|node_1|3|node_1|3|node}} = {{CDD|node_h1|4|node|3|node_1|3|node|3|node_1|3|node_1|3|node}}pentistericantic 7-cube
celliprismatotruncated demihepteract (capthesa)
(1,1,3,3,5,7,7)18144040320
align=center

!20

{{CDD|nodes_10ru|split2|node|3|node_1|3|node_1|3|node_1|3|node}} = {{CDD|node_h1|4|node|3|node|3|node_1|3|node_1|3|node_1|3|node}}pentisteriruncic 7-cube
celliprismatorhombated demihepteract (coprahesa)
(1,1,1,3,5,7,7)12096026880
align=center

!21

{{CDD|nodes_10ru|split2|node_1|3|node_1|3|node|3|node|3|node_1}} = {{CDD|node_h1|4|node|3|node_1|3|node_1|3|node|3|node|3|node_1}}hexiruncicantic 7-cube
terigreatorhombated demihepteract (tugrohesa)
(1,1,3,5,5,5,7)12096026880
align=center

!22

{{CDD|nodes_10ru|split2|node_1|3|node|3|node_1|3|node|3|node_1}} = {{CDD|node_h1|4|node|3|node_1|3|node|3|node_1|3|node|3|node_1}}hexistericantic 7-cube
teriprismatotruncated demihepteract (tupthesa)
(1,1,3,3,5,5,7)22176040320
align=center

!23

{{CDD|nodes_10ru|split2|node|3|node_1|3|node_1|3|node|3|node_1}} = {{CDD|node_h1|4|node|3|node|3|node_1|3|node_1|3|node|3|node_1}}hexisteriruncic 7-cube
teriprismatorhombated demihepteract (tuprohesa)
(1,1,1,3,5,5,7)13440026880
align=center

!24

{{CDD|nodes_10ru|split2|node_1|3|node|3|node|3|node_1|3|node_1}} = {{CDD|node_h1|4|node|3|node_1|3|node|3|node|3|node_1|3|node_1}}hexipenticantic 7-cube
teriCellitruncated demihepteract (tucothesa)
(1,1,3,3,3,5,7)14784026880
align=center

!25

{{CDD|nodes_10ru|split2|node|3|node_1|3|node|3|node_1|3|node_1}} = {{CDD|node_h1|4|node|3|node|3|node_1|3|node|3|node_1|3|node_1}}hexipentiruncic 7-cube
tericellirhombated demihepteract (tucrohesa)
(1,1,1,3,3,5,7)16128026880
align=center

!26

{{CDD|nodes_10ru|split2|node|3|node|3|node_1|3|node_1|3|node_1}} = {{CDD|node_h1|4|node|3|node|3|node|3|node_1|3|node_1|3|node_1}}hexipentisteric 7-cube
tericelliprismated demihepteract (tucophesa)
(1,1,1,1,3,5,7)8064013440
align=center

!27

{{CDD|nodes_10ru|split2|node_1|3|node_1|3|node_1|3|node_1|3|node}} = {{CDD|node_h1|4|node|3|node_1|3|node_1|3|node_1|3|node_1|3|node}}pentisteriruncicantic 7-cube
great cellated demihepteract (gochesa)
(1,1,3,5,7,9,9)28224080640
align=center

!28

{{CDD|nodes_10ru|split2|node_1|3|node_1|3|node_1|3|node|3|node_1}} = {{CDD|node_h1|4|node|3|node_1|3|node_1|3|node_1|3|node|3|node_1}}hexisteriruncicantic 7-cube
terigreatoprimated demihepteract (tugphesa)
(1,1,3,5,7,7,9)32256080640
align=center

!29

{{CDD|nodes_10ru|split2|node_1|3|node_1|3|node|3|node_1|3|node_1}} = {{CDD|node_h1|4|node|3|node_1|3|node_1|3|node|3|node_1|3|node_1}}hexipentiruncicantic 7-cube
tericelligreatorhombated demihepteract (tucagrohesa)
(1,1,3,5,5,7,9)32256080640
align=center

!30

{{CDD|nodes_10ru|split2|node_1|3|node|3|node_1|3|node_1|3|node_1}} = {{CDD|node_h1|4|node|3|node_1|3|node|3|node_1|3|node_1|3|node_1}}hexipentistericantic 7-cube
tericelliprismatotruncated demihepteract (tucpathesa)
(1,1,3,3,5,7,9)36288080640
align=center

!31

{{CDD|nodes_10ru|split2|node|3|node_1|3|node_1|3|node_1|3|node_1}} = {{CDD|node_h1|4|node|3|node|3|node_1|3|node_1|3|node_1|3|node_1}}hexipentisteriruncic 7-cube
tericellprismatorhombated demihepteract (tucprohesa)
(1,1,1,3,5,7,9)24192053760
align=center

!32

{{CDD|nodes_10ru|split2|node_1|3|node_1|3|node_1|3|node_1|3|node_1}} = {{CDD|node_h1|4|node|3|node_1|3|node_1|3|node_1|3|node_1|3|node_1}}hexipentisteriruncicantic 7-cube
great terated demihepteract (guthesa)
(1,1,3,5,7,9,11)564480161280

The E<sub>7</sub> family

The E7 Coxeter group has order 2,903,040.

There are 127 forms based on all permutations of the Coxeter-Dynkin diagrams with one or more rings.

See also a list of E7 polytopes for symmetric Coxeter plane graphs of these polytopes.

class="wikitable collapsible collapsed"

!colspan=12|E7 uniform polytopes

rowspan=2|#

!rowspan=2|Coxeter-Dynkin diagram
Schläfli symbol

!rowspan=2|Names

!colspan=7|Element counts

6|| 5|| 4|| 3|| 2|| 1|| 0
style="text-align:center;"

|1

{{CDD|nodea|3a|nodea|3a|nodea|3a|branch|3a|nodea|3a|nodea_1}}231 (laq)63247881612820160100802016126
style="text-align:center;"

|2

{{CDD|nodea|3a|nodea|3a|nodea|3a|branch|3a|nodea_1|3a|nodea}}Rectified 231 (rolaq)758103324788010080090720302402016
style="text-align:center;"

|3

{{CDD|nodea|3a|nodea|3a|nodea|3a|branch_10|3a|nodea|3a|nodea}}Rectified 132 (rolin)758123487207219152024192012096010080
style="text-align:center;"

|4

{{CDD|nodea|3a|nodea|3a|nodea|3a|branch_01lr|3a|nodea|3a|nodea}}132 (lin)182428423688504004032010080576
style="text-align:center;"

|5

{{CDD|nodea|3a|nodea|3a|nodea_1|3a|branch|3a|nodea|3a|nodea}}Birectified 321 (branq)7581234868040161280161280604804032
style="text-align:center;"

|6

{{CDD|nodea|3a|nodea_1|3a|nodea|3a|branch|3a|nodea|3a|nodea}}Rectified 321 (ranq)7584435270560483841159212096756
style="text-align:center;"

|7

{{CDD|nodea_1|3a|nodea|3a|nodea|3a|branch|3a|nodea|3a|nodea}}321 (naq)70260481209610080403275656
align=center

|8

{{CDD|nodea|3a|nodea|3a|nodea|3a|branch|3a|nodea_1|3a|nodea_1}}Truncated 231 (talq)758103324788010080090720322564032
align=center

|9

{{CDD|nodea|3a|nodea|3a|nodea|3a|branch_10|3a|nodea|3a|nodea_1}}Cantellated 231 (sirlaq)13104020160
align=center

|10

{{CDD|nodea|3a|nodea|3a|nodea|3a|branch_10|3a|nodea_1|3a|nodea}}Bitruncated 231 (botlaq)30240
align=center

|11

{{CDD|nodea|3a|nodea|3a|nodea|3a|branch_01lr|3a|nodea|3a|nodea_1}}small demified 231 (shilq)27742242878120151200131040423364032
align=center

|12

{{CDD|nodea|3a|nodea|3a|nodea|3a|branch_01lr|3a|nodea_1|3a|nodea}}demirectified 231 (hirlaq)12096
align=center

|13

{{CDD|nodea|3a|nodea|3a|nodea|3a|branch_11|3a|nodea|3a|nodea}}truncated 132 (tolin)20160
align=center

|14

{{CDD|nodea|3a|nodea|3a|nodea_1|3a|branch|3a|nodea|3a|nodea_1}}small demiprismated 231 (shiplaq)20160
align=center

|15

{{CDD|nodea|3a|nodea|3a|nodea_1|3a|branch|3a|nodea_1|3a|nodea}}birectified 132 (berlin)7582242814263240320054432030240040320
align=center

|16

{{CDD|nodea|3a|nodea|3a|nodea_1|3a|branch_10|3a|nodea|3a|nodea}}tritruncated 321 (totanq)40320
align=center

|17

{{CDD|nodea|3a|nodea|3a|nodea_1|3a|branch_01lr|3a|nodea|3a|nodea}}demibirectified 321 (hobranq)20160
align=center

|18

{{CDD|nodea|3a|nodea_1|3a|nodea|3a|branch|3a|nodea|3a|nodea_1}}small cellated 231 (scalq)7560
align=center

|19

{{CDD|nodea|3a|nodea_1|3a|nodea|3a|branch|3a|nodea_1|3a|nodea}}small biprismated 231 (sobpalq)30240
align=center

|20

{{CDD|nodea|3a|nodea_1|3a|nodea|3a|branch_10|3a|nodea|3a|nodea}}small birhombated 321 (sabranq)60480
align=center

|21

{{CDD|nodea|3a|nodea_1|3a|nodea|3a|branch_01lr|3a|nodea|3a|nodea}}demirectified 321 (harnaq)12096
align=center

|22

{{CDD|nodea|3a|nodea_1|3a|nodea_1|3a|branch|3a|nodea|3a|nodea}}bitruncated 321 (botnaq)12096
align=center

|23

{{CDD|nodea_1|3a|nodea|3a|nodea|3a|branch|3a|nodea|3a|nodea_1}}small terated 321 (stanq)1512
align=center

|24

{{CDD|nodea_1|3a|nodea|3a|nodea|3a|branch|3a|nodea_1|3a|nodea}}small demicellated 321 (shocanq)12096
align=center

|25

{{CDD|nodea_1|3a|nodea|3a|nodea|3a|branch_10|3a|nodea|3a|nodea}}small prismated 321 (spanq)40320
align=center

|26

{{CDD|nodea_1|3a|nodea|3a|nodea|3a|branch_01lr|3a|nodea|3a|nodea}}small demified 321 (shanq)4032
align=center

|27

{{CDD|nodea_1|3a|nodea|3a|nodea_1|3a|branch|3a|nodea|3a|nodea}}small rhombated 321 (sranq)12096
align=center

|28

{{CDD|nodea_1|3a|nodea_1|3a|nodea|3a|branch|3a|nodea|3a|nodea}}Truncated 321 (tanq)75811592483847056044352128521512
align=center

|29

{{CDD|nodea|3a|nodea|3a|nodea|3a|branch_10|3a|nodea_1|3a|nodea_1}}great rhombated 231 (girlaq)60480
align=center

|30

{{CDD|nodea|3a|nodea|3a|nodea|3a|branch_01lr|3a|nodea_1|3a|nodea_1}}demitruncated 231 (hotlaq)24192
align=center

|31

{{CDD|nodea|3a|nodea|3a|nodea|3a|branch_11|3a|nodea|3a|nodea_1}}small demirhombated 231 (sherlaq)60480
align=center

|32

{{CDD|nodea|3a|nodea|3a|nodea|3a|branch_11|3a|nodea_1|3a|nodea}}demibitruncated 231 (hobtalq)60480
align=center

|33

{{CDD|nodea|3a|nodea|3a|nodea_1|3a|branch|3a|nodea_1|3a|nodea_1}}demiprismated 231 (hiptalq)80640
align=center

|34

{{CDD|nodea|3a|nodea|3a|nodea_1|3a|branch_10|3a|nodea|3a|nodea_1}}demiprismatorhombated 231 (hiprolaq)120960
align=center

|35

{{CDD|nodea|3a|nodea|3a|nodea_1|3a|branch_10|3a|nodea_1|3a|nodea}}bitruncated 132 (batlin)120960
align=center

|36

{{CDD|nodea|3a|nodea|3a|nodea_1|3a|branch_01lr|3a|nodea|3a|nodea_1}}small prismated 231 (spalq)80640
align=center

|37

{{CDD|nodea|3a|nodea|3a|nodea_1|3a|branch_01lr|3a|nodea_1|3a|nodea}}small rhombated 132 (sirlin)120960
align=center

|38

{{CDD|nodea|3a|nodea|3a|nodea_1|3a|branch_11|3a|nodea|3a|nodea}}tritruncated 231 (tatilq)80640
align=center

|39

{{CDD|nodea|3a|nodea_1|3a|nodea|3a|branch|3a|nodea_1|3a|nodea_1}}cellitruncated 231 (catalaq)60480
align=center

|40

{{CDD|nodea|3a|nodea_1|3a|nodea|3a|branch_10|3a|nodea|3a|nodea_1}}cellirhombated 231 (crilq)362880
align=center

|41

{{CDD|nodea|3a|nodea_1|3a|nodea|3a|branch_10|3a|nodea_1|3a|nodea}}biprismatotruncated 231 (biptalq)181440
align=center

|42

{{CDD|nodea|3a|nodea_1|3a|nodea|3a|branch_01lr|3a|nodea|3a|nodea_1}}small prismated 132 (seplin)60480
align=center

|43

{{CDD|nodea|3a|nodea_1|3a|nodea|3a|branch_01lr|3a|nodea_1|3a|nodea}}small biprismated 321 (sabipnaq)120960
align=center

|44

{{CDD|nodea|3a|nodea_1|3a|nodea|3a|branch_11|3a|nodea|3a|nodea}}small demibirhombated 321 (shobranq)120960
align=center

|45

{{CDD|nodea|3a|nodea_1|3a|nodea_1|3a|branch|3a|nodea|3a|nodea_1}}cellidemiprismated 231 (chaplaq)60480
align=center

|46

{{CDD|nodea|3a|nodea_1|3a|nodea_1|3a|branch|3a|nodea_1|3a|nodea}}demibiprismatotruncated 321 (hobpotanq)120960
align=center

|47

{{CDD|nodea|3a|nodea_1|3a|nodea_1|3a|branch_10|3a|nodea|3a|nodea}}great birhombated 321 (gobranq)120960
align=center

|48

{{CDD|nodea|3a|nodea_1|3a|nodea_1|3a|branch_01lr|3a|nodea|3a|nodea}}demibitruncated 321 (hobtanq)60480
align=center

|49

{{CDD|nodea_1|3a|nodea|3a|nodea|3a|branch|3a|nodea_1|3a|nodea_1}}teritruncated 231 (totalq)24192
align=center

|50

{{CDD|nodea_1|3a|nodea|3a|nodea|3a|branch_10|3a|nodea|3a|nodea_1}}terirhombated 231 (trilq)120960
align=center

|51

{{CDD|nodea_1|3a|nodea|3a|nodea|3a|branch_10|3a|nodea_1|3a|nodea}}demicelliprismated 321 (hicpanq)120960
align=center

|52

{{CDD|nodea_1|3a|nodea|3a|nodea|3a|branch_01lr|3a|nodea|3a|nodea_1}}small teridemified 231 (sethalq)24192
align=center

|53

{{CDD|nodea_1|3a|nodea|3a|nodea|3a|branch_01lr|3a|nodea_1|3a|nodea}}small cellated 321 (scanq)60480
align=center

|54

{{CDD|nodea_1|3a|nodea|3a|nodea|3a|branch_11|3a|nodea|3a|nodea}}demiprismated 321 (hipnaq)80640
align=center

|55

{{CDD|nodea_1|3a|nodea|3a|nodea_1|3a|branch|3a|nodea|3a|nodea_1}}terirhombated 321 (tranq)60480
align=center

|56

{{CDD|nodea_1|3a|nodea|3a|nodea_1|3a|branch|3a|nodea_1|3a|nodea}}demicellirhombated 321 (hocranq)120960
align=center

|57

{{CDD|nodea_1|3a|nodea|3a|nodea_1|3a|branch_10|3a|nodea|3a|nodea}}prismatorhombated 321 (pranq)120960
align=center

|58

{{CDD|nodea_1|3a|nodea|3a|nodea_1|3a|branch_01lr|3a|nodea|3a|nodea}}small demirhombated 321 (sharnaq)60480
align=center

|59

{{CDD|nodea_1|3a|nodea_1|3a|nodea|3a|branch|3a|nodea|3a|nodea_1}}teritruncated 321 (tetanq)15120
align=center

|60

{{CDD|nodea_1|3a|nodea_1|3a|nodea|3a|branch|3a|nodea_1|3a|nodea}}demicellitruncated 321 (hictanq)60480
align=center

|61

{{CDD|nodea_1|3a|nodea_1|3a|nodea|3a|branch_10|3a|nodea|3a|nodea}}prismatotruncated 321 (potanq)120960
align=center

|62

{{CDD|nodea_1|3a|nodea_1|3a|nodea|3a|branch_01lr|3a|nodea|3a|nodea}}demitruncated 321 (hotnaq)24192
align=center

|63

{{CDD|nodea_1|3a|nodea_1|3a|nodea_1|3a|branch|3a|nodea|3a|nodea}}great rhombated 321 (granq)24192
align=center

|64

{{CDD|nodea|3a|nodea|3a|nodea|3a|branch_11|3a|nodea_1|3a|nodea_1}}great demified 231 (gahlaq)120960
align=center

|65

{{CDD|nodea|3a|nodea|3a|nodea_1|3a|branch_10|3a|nodea_1|3a|nodea_1}}great demiprismated 231 (gahplaq)241920
align=center

|66

{{CDD|nodea|3a|nodea|3a|nodea_1|3a|branch_01lr|3a|nodea_1|3a|nodea_1}}prismatotruncated 231 (potlaq)241920
align=center

|67

{{CDD|nodea|3a|nodea|3a|nodea_1|3a|branch_11|3a|nodea|3a|nodea_1}}prismatorhombated 231 (prolaq)241920
align=center

|68

{{CDD|nodea|3a|nodea|3a|nodea_1|3a|branch_11|3a|nodea_1|3a|nodea}}great rhombated 132 (girlin)241920
align=center

|69

{{CDD|nodea|3a|nodea_1|3a|nodea|3a|branch_10|3a|nodea_1|3a|nodea_1}}celligreatorhombated 231 (cagrilq)362880
align=center

|70

{{CDD|nodea|3a|nodea_1|3a|nodea|3a|branch_01lr|3a|nodea_1|3a|nodea_1}}cellidemitruncated 231 (chotalq)241920
align=center

|71

{{CDD|nodea|3a|nodea_1|3a|nodea|3a|branch_11|3a|nodea|3a|nodea_1}}prismatotruncated 132 (patlin)362880
align=center

|72

{{CDD|nodea|3a|nodea_1|3a|nodea|3a|branch_11|3a|nodea_1|3a|nodea}}biprismatorhombated 321 (bipirnaq)362880
align=center

|73

{{CDD|nodea|3a|nodea_1|3a|nodea_1|3a|branch|3a|nodea_1|3a|nodea_1}}tritruncated 132 (tatlin)241920
align=center

|74

{{CDD|nodea|3a|nodea_1|3a|nodea_1|3a|branch_10|3a|nodea|3a|nodea_1}}cellidemiprismatorhombated 231 (chopralq)362880
align=center

|75

{{CDD|nodea|3a|nodea_1|3a|nodea_1|3a|branch_10|3a|nodea_1|3a|nodea}}great demibiprismated 321 (ghobipnaq)362880
align=center

|76

{{CDD|nodea|3a|nodea_1|3a|nodea_1|3a|branch_01lr|3a|nodea|3a|nodea_1}}celliprismated 231 (caplaq)241920
align=center

|77

{{CDD|nodea|3a|nodea_1|3a|nodea_1|3a|branch_01lr|3a|nodea_1|3a|nodea}}biprismatotruncated 321 (boptanq)362880
align=center

|78

{{CDD|nodea|3a|nodea_1|3a|nodea_1|3a|branch_11|3a|nodea|3a|nodea}}great trirhombated 231 (gatralaq)241920
align=center

|79

{{CDD|nodea_1|3a|nodea|3a|nodea|3a|branch_10|3a|nodea_1|3a|nodea_1}}terigreatorhombated 231 (togrilq)241920
align=center

|80

{{CDD|nodea_1|3a|nodea|3a|nodea|3a|branch_01lr|3a|nodea_1|3a|nodea_1}}teridemitruncated 231 (thotalq)120960
align=center

|81

{{CDD|nodea_1|3a|nodea|3a|nodea|3a|branch_11|3a|nodea|3a|nodea_1}}teridemirhombated 231 (thorlaq)241920
align=center

|82

{{CDD|nodea_1|3a|nodea|3a|nodea|3a|branch_11|3a|nodea_1|3a|nodea}}celliprismated 321 (capnaq)241920
align=center

|83

{{CDD|nodea_1|3a|nodea|3a|nodea_1|3a|branch|3a|nodea_1|3a|nodea_1}}teridemiprismatotruncated 231 (thoptalq)241920
align=center

|84

{{CDD|nodea_1|3a|nodea|3a|nodea_1|3a|branch_10|3a|nodea|3a|nodea_1}}teriprismatorhombated 321 (tapronaq)362880
align=center

|85

{{CDD|nodea_1|3a|nodea|3a|nodea_1|3a|branch_10|3a|nodea_1|3a|nodea}}demicelliprismatorhombated 321 (hacpranq)362880
align=center

|86

{{CDD|nodea_1|3a|nodea|3a|nodea_1|3a|branch_01lr|3a|nodea|3a|nodea_1}}teriprismated 231 (toplaq)241920
align=center

|87

{{CDD|nodea_1|3a|nodea|3a|nodea_1|3a|branch_01lr|3a|nodea_1|3a|nodea}}cellirhombated 321 (cranq)362880
align=center

|88

{{CDD|nodea_1|3a|nodea|3a|nodea_1|3a|branch_11|3a|nodea|3a|nodea}}demiprismatorhombated 321 (hapranq)241920
align=center

|89

{{CDD|nodea_1|3a|nodea_1|3a|nodea|3a|branch|3a|nodea_1|3a|nodea_1}}tericellitruncated 231 (tectalq)120960
align=center

|90

{{CDD|nodea_1|3a|nodea_1|3a|nodea|3a|branch_10|3a|nodea|3a|nodea_1}}teriprismatotruncated 321 (toptanq)362880
align=center

|91

{{CDD|nodea_1|3a|nodea_1|3a|nodea|3a|branch_10|3a|nodea_1|3a|nodea}}demicelliprismatotruncated 321 (hecpotanq)362880
align=center

|92

{{CDD|nodea_1|3a|nodea_1|3a|nodea|3a|branch_01lr|3a|nodea|3a|nodea_1}}teridemitruncated 321 (thotanq)120960
align=center

|93

{{CDD|nodea_1|3a|nodea_1|3a|nodea|3a|branch_01lr|3a|nodea_1|3a|nodea}}cellitruncated 321 (catnaq)241920
align=center

|94

{{CDD|nodea_1|3a|nodea_1|3a|nodea|3a|branch_11|3a|nodea|3a|nodea}}demiprismatotruncated 321 (hiptanq)241920
align=center

|95

{{CDD|nodea_1|3a|nodea_1|3a|nodea_1|3a|branch|3a|nodea|3a|nodea_1}}terigreatorhombated 321 (tagranq)120960
align=center

|96

{{CDD|nodea_1|3a|nodea_1|3a|nodea_1|3a|branch|3a|nodea_1|3a|nodea}}demicelligreatorhombated 321 (hicgarnq)241920
align=center

|97

{{CDD|nodea_1|3a|nodea_1|3a|nodea_1|3a|branch_10|3a|nodea|3a|nodea}}great prismated 321 (gopanq)241920
align=center

|98

{{CDD|nodea_1|3a|nodea_1|3a|nodea_1|3a|branch_01lr|3a|nodea|3a|nodea}}great demirhombated 321 (gahranq)120960
align=center

|99

{{CDD|nodea|3a|nodea|3a|nodea_1|3a|branch_11|3a|nodea_1|3a|nodea_1}}great prismated 231 (gopalq)483840
align=center

|100

{{CDD|nodea|3a|nodea_1|3a|nodea|3a|branch_11|3a|nodea_1|3a|nodea_1}}great cellidemified 231 (gechalq)725760
align=center

|101

{{CDD|nodea|3a|nodea_1|3a|nodea_1|3a|branch_10|3a|nodea_1|3a|nodea_1}}great birhombated 132 (gebrolin)725760
align=center

|102

{{CDD|nodea|3a|nodea_1|3a|nodea_1|3a|branch_01lr|3a|nodea_1|3a|nodea_1}}prismatorhombated 132 (prolin)725760
align=center

|103

{{CDD|nodea|3a|nodea_1|3a|nodea_1|3a|branch_11|3a|nodea|3a|nodea_1}}celliprismatorhombated 231 (caprolaq)725760
align=center

|104

{{CDD|nodea|3a|nodea_1|3a|nodea_1|3a|branch_11|3a|nodea_1|3a|nodea}}great biprismated 231 (gobpalq)725760
align=center

|105

{{CDD|nodea_1|3a|nodea|3a|nodea|3a|branch_11|3a|nodea_1|3a|nodea_1}}tericelliprismated 321 (ticpanq)483840
align=center

|106

{{CDD|nodea_1|3a|nodea|3a|nodea_1|3a|branch_10|3a|nodea_1|3a|nodea_1}}teridemigreatoprismated 231 (thegpalq)725760
align=center

|107

{{CDD|nodea_1|3a|nodea|3a|nodea_1|3a|branch_01lr|3a|nodea_1|3a|nodea_1}}teriprismatotruncated 231 (teptalq)725760
align=center

|108

{{CDD|nodea_1|3a|nodea|3a|nodea_1|3a|branch_11|3a|nodea|3a|nodea_1}}teriprismatorhombated 231 (topralq)725760
align=center

|109

{{CDD|nodea_1|3a|nodea|3a|nodea_1|3a|branch_11|3a|nodea_1|3a|nodea}}cellipriemsatorhombated 321 (copranq)725760
align=center

|110

{{CDD|nodea_1|3a|nodea_1|3a|nodea|3a|branch_10|3a|nodea_1|3a|nodea_1}}tericelligreatorhombated 231 (tecgrolaq)725760
align=center

|111

{{CDD|nodea_1|3a|nodea_1|3a|nodea|3a|branch_01lr|3a|nodea_1|3a|nodea_1}}tericellitruncated 321 (tectanq)483840
align=center

|112

{{CDD|nodea_1|3a|nodea_1|3a|nodea|3a|branch_11|3a|nodea|3a|nodea_1}}teridemiprismatotruncated 321 (thoptanq)725760
align=center

|113

{{CDD|nodea_1|3a|nodea_1|3a|nodea|3a|branch_11|3a|nodea_1|3a|nodea}}celliprismatotruncated 321 (coptanq)725760
align=center

|114

{{CDD|nodea_1|3a|nodea_1|3a|nodea_1|3a|branch|3a|nodea_1|3a|nodea_1}}teridemicelligreatorhombated 321 (thocgranq)483840
align=center

|115

{{CDD|nodea_1|3a|nodea_1|3a|nodea_1|3a|branch_10|3a|nodea|3a|nodea_1}}terigreatoprismated 321 (tagpanq)725760
align=center

|116

{{CDD|nodea_1|3a|nodea_1|3a|nodea_1|3a|branch_10|3a|nodea_1|3a|nodea}}great demicellated 321 (gahcnaq)725760
align=center

|117

{{CDD|nodea_1|3a|nodea_1|3a|nodea_1|3a|branch_01lr|3a|nodea|3a|nodea_1}}tericelliprismated laq (tecpalq)483840
align=center

|118

{{CDD|nodea_1|3a|nodea_1|3a|nodea_1|3a|branch_01lr|3a|nodea_1|3a|nodea}}celligreatorhombated 321 (cogranq)725760
align=center

|119

{{CDD|nodea_1|3a|nodea_1|3a|nodea_1|3a|branch_11|3a|nodea|3a|nodea}}great demified 321 (gahnq)483840
align=center

|120

{{CDD|nodea|3a|nodea_1|3a|nodea_1|3a|branch_11|3a|nodea_1|3a|nodea_1}}great cellated 231 (gocalq)1451520
align=center

|121

{{CDD|nodea_1|3a|nodea|3a|nodea_1|3a|branch_11|3a|nodea_1|3a|nodea_1}}terigreatoprismated 231 (tegpalq)1451520
align=center

|122

{{CDD|nodea_1|3a|nodea_1|3a|nodea|3a|branch_11|3a|nodea_1|3a|nodea_1}}tericelliprismatotruncated 321 (tecpotniq)1451520
align=center

|123

{{CDD|nodea_1|3a|nodea_1|3a|nodea_1|3a|branch_10|3a|nodea_1|3a|nodea_1}}tericellidemigreatoprismated 231 (techogaplaq)1451520
align=center

|124

{{CDD|nodea_1|3a|nodea_1|3a|nodea_1|3a|branch_01lr|3a|nodea_1|3a|nodea_1}}tericelligreatorhombated 321 (tacgarnq)1451520
align=center

|125

{{CDD|nodea_1|3a|nodea_1|3a|nodea_1|3a|branch_11|3a|nodea|3a|nodea_1}}tericelliprismatorhombated 231 (tecprolaq)1451520
align=center

|126

{{CDD|nodea_1|3a|nodea_1|3a|nodea_1|3a|branch_11|3a|nodea_1|3a|nodea}}great cellated 321 (gocanq)1451520
align=center

|127

{{CDD|nodea_1|3a|nodea_1|3a|nodea_1|3a|branch_11|3a|nodea_1|3a|nodea_1}}great terated 321 (gotanq)2903040

Regular and uniform honeycombs

File:Coxeter diagram affine rank7 correspondence.png

There are five fundamental affine Coxeter groups and sixteen prismatic groups that generate regular and uniform tessellations in 6-space:

class="wikitable"
#

!colspan=2|Coxeter group

!Coxeter diagram

!Forms

align=center

|1

{\tilde{A}}_6[3[7]]{{CDD|branch|3ab|nodes|3ab|nodes|split2|node}}17
align=center

|2

{\tilde{C}}_6[4,34,4]{{CDD|node|4|node|3|node|3|node|3|node|3|node|4|node}}71
align=center

|3

{\tilde{B}}_6h[4,34,4]
[4,33,31,1]
{{CDD|nodes|split2|node|3|node|3|node|3|node|4|node}}95 (32 new)
align=center

|4

{\tilde{D}}_6q[4,34,4]
[31,1,32,31,1]
{{CDD|nodes|split2|node|3|node|3|node|split1|nodes}}41 (6 new)
align=center

|5

{\tilde{E}}_6[32,2,2]{{CDD|nodes|3ab|nodes|split2|node|3|node|3|node}}39

Regular and uniform tessellations include:

  • {\tilde{A}}_6, 17 forms
  • Uniform 6-simplex honeycomb: {3[7]} {{CDD|node_1|split1|nodes|3ab|nodes|3ab|nodes|3ab|branch}}
  • Uniform Cyclotruncated 6-simplex honeycomb: t0,1{3[7]} {{CDD|node|split1|nodes|3ab|nodes|3ab|nodes|3ab|branch_11}}
  • Uniform Omnitruncated 6-simplex honeycomb: t0,1,2,3,4,5,6,7{3[7]} {{CDD|node_1|split1|nodes_11|3ab|nodes_11|3ab|nodes_11|3ab|branch_11}}
  • {\tilde{C}}_6, [4,34,4], 71 forms
  • Regular 6-cube honeycomb, represented by symbols {4,34,4}, {{CDD|node_1|4|node|3|node|3|node|3|node|3|node|4|node}}
  • {\tilde{B}}_6, [31,1,33,4], 95 forms, 64 shared with {\tilde{C}}_6, 32 new
  • Uniform 6-demicube honeycomb, represented by symbols h{4,34,4} = {31,1,33,4}, {{CDD|node_h1|4|node|3|node|3|node|3|node|3|node|4|node}} = {{CDD|nodes_10ru|split2|node|3|node|3|node|3|node|4|node}}
  • {\tilde{D}}_6, [31,1,32,31,1], 41 unique ringed permutations, most shared with {\tilde{B}}_6 and {\tilde{C}}_6, and 6 are new. Coxeter calls the first one a quarter 6-cubic honeycomb.
  • {{CDD|nodes_10ru|split2|node|3|node|3|node|split1|nodes_10lu}} = {{CDD|node_h1|4|node|3|node|3|node|3|node|3|node|4|node_h1}}
  • {{CDD|nodes_10ru|split2|node_1|3|node|3|node|split1|nodes_10lu}} = {{CDD|node_h1|4|node|3|node_1|3|node|3|node|3|node|4|node_h1}}
  • {{CDD|nodes_10ru|split2|node|3|node_1|3|node|split1|nodes_10lu}} = {{CDD|node_h1|4|node|3|node|3|node_1|3|node|3|node|4|node_h1}}
  • {{CDD|nodes_10ru|split2|node_1|3|node_1|3|node|split1|nodes_10lu}} = {{CDD|node_h1|4|node|3|node_1|3|node_1|3|node|3|node|4|node_h1}}
  • {{CDD|nodes_10ru|split2|node_1|3|node|3|node_1|split1|nodes_10lu}} = {{CDD|node_h1|4|node|3|node_1|3|node|3|node_1|3|node|4|node_h1}}
  • {{CDD|nodes_10ru|split2|node_1|3|node_1|3|node_1|split1|nodes_10lu}} = {{CDD|node_h1|4|node|3|node_1|3|node_1|3|node_1|3|node|4|node_h1}}
  • {\tilde{E}}_6: [32,2,2], 39 forms
  • Uniform 222 honeycomb: represented by symbols {3,3,32,2}, {{CDD|node_1|3|node||3|node|split1|nodes|3ab|nodes}}
  • Uniform t4(222) honeycomb: 4r{3,3,32,2}, {{CDD|node|3|node||3|node|split1|nodes|3ab|nodes_11}}
  • Uniform 0222 honeycomb: {32,2,2}, {{CDD|nodes|3ab|nodes|split2|node_1|3|node|3|node}}
  • Uniform t2(0222) honeycomb: 2r{32,2,2}, {{CDD|nodes_11|3ab|nodes|split2|node|3|node|3|node_1}}

class=wikitable

|+ Prismatic groups

#

!colspan=2|Coxeter group

!Coxeter-Dynkin diagram

1{\tilde{A}}_5x{\tilde{I}}_1[3[6],2,∞]{{CDD|node|split1|nodes|3ab|nodes|split2|node|2|node|infin|node}}
2{\tilde{B}}_5x{\tilde{I}}_1[4,3,31,1,2,∞]{{CDD|node|4|node|3|node|3|node|3|node|4|node|2|node|infin|node}}
3{\tilde{C}}_5x{\tilde{I}}_1[4,33,4,2,∞]{{CDD|nodes|split2|node|3|node|3|node|4|node|2|node|infin|node}}
4{\tilde{D}}_5x{\tilde{I}}_1[31,1,3,31,1,2,∞]{{CDD|nodes|split2|node|3|node|split1|nodes|2|node|infin|node}}
5{\tilde{A}}_4x{\tilde{I}}_1x{\tilde{I}}_1[3[5],2,∞,2,∞,2,∞]{{CDD|branch|3ab|nodes|split2|node|2|node|infin|node|2|node|infin|node}}
6{\tilde{B}}_4x{\tilde{I}}_1x{\tilde{I}}_1[4,3,31,1,2,∞,2,∞]{{CDD|nodes|split2|node|3|node|4|node|2|node|infin|node|2|node|infin|node}}
7{\tilde{C}}_4x{\tilde{I}}_1x{\tilde{I}}_1[4,3,3,4,2,∞,2,∞]{{CDD|node|4|node|3|node|3|node|4|node|2|node|infin|node|2|node|infin|node}}
8{\tilde{D}}_4x{\tilde{I}}_1x{\tilde{I}}_1[31,1,1,1,2,∞,2,∞]{{CDD|nodes|split2|node|split1|nodes|2|node|infin|node|2|node|infin|node}}
9{\tilde{F}}_4x{\tilde{I}}_1x{\tilde{I}}_1[3,4,3,3,2,∞,2,∞]{{CDD|node|3|node|4|node|3|node|3|node|2|node|infin|node|2|node|infin|node}}
10{\tilde{C}}_3x{\tilde{I}}_1x{\tilde{I}}_1x{\tilde{I}}_1[4,3,4,2,∞,2,∞,2,∞]{{CDD|node|4|node|3|node|4|node|2|node|infin|node|2|node|infin|node|2|node|infin|node}}
11{\tilde{B}}_3x{\tilde{I}}_1x{\tilde{I}}_1x{\tilde{I}}_1[4,31,1,2,∞,2,∞,2,∞]{{CDD|nodes|split2|node|4|node|2|node|infin|node|2|node|infin|node|2|node|infin|node}}
12{\tilde{A}}_3x{\tilde{I}}_1x{\tilde{I}}_1x{\tilde{I}}_1[3[4],2,∞,2,∞,2,∞]{{CDD|branch|3ab|branch|2|node|infin|node|2|node|infin|node|2|node|infin|node}}
13{\tilde{C}}_2x{\tilde{I}}_1x{\tilde{I}}_1x{\tilde{I}}_1x{\tilde{I}}_1[4,4,2,∞,2,∞,2,∞,2,∞]{{CDD|node|4|node|4|node|2|node|infin|node|2|node|infin|node|2|node|infin|node|2|node|infin|node}}
14{\tilde{H}}_2x{\tilde{I}}_1x{\tilde{I}}_1x{\tilde{I}}_1x{\tilde{I}}_1[6,3,2,∞,2,∞,2,∞,2,∞]{{CDD|node|6|node|3|node|2|node|infin|node|2|node|infin|node|2|node|infin|node|2|node|infin|node}}
15{\tilde{A}}_2x{\tilde{I}}_1x{\tilde{I}}_1x{\tilde{I}}_1x{\tilde{I}}_1[3[3],2,∞,2,∞,2,∞,2,∞]{{CDD|node|split1|branch|2|node|infin|node|2|node|infin|node|2|node|infin|node|2|node|infin|node}}
16{\tilde{I}}_1x{\tilde{I}}_1x{\tilde{I}}_1x{\tilde{I}}_1x{\tilde{I}}_1x{\tilde{I}}_1[∞,2,∞,2,∞,2,∞,2,∞]{{CDD|node|infin|node|2|node|infin|node|2|node|infin|node|2|node|infin|node|2|node|infin|node|2|node|infin|node}}

= Regular and uniform hyperbolic honeycombs =

There are no compact hyperbolic Coxeter groups of rank 7, groups that can generate honeycombs with all finite facets, and a finite vertex figure. However, there are 3 paracompact hyperbolic Coxeter groups of rank 7, each generating uniform honeycombs in 6-space as permutations of rings of the Coxeter diagrams.

class=wikitable

|align=right|{\bar{P}}_6 = [3,3[6]]:
{{CDD|node|split1|nodes|3ab|nodes|split2|node|3|node}}

|align=right|{\bar{Q}}_6 = [31,1,3,32,1]:
{{CDD|nodea|3a|branch|3a|branch|3a|nodea|3a|nodea}}

|align=right|{\bar{S}}_6 = [4,3,3,32,1]:
{{CDD|nodea|3a|nodea|3a|branch|3a|nodea|3a|nodea|4a|nodea}}

Notes on the Wythoff construction for the uniform 7-polytopes

The reflective 7-dimensional uniform polytopes are constructed through a Wythoff construction process, and represented by a Coxeter-Dynkin diagram, where each node represents a mirror. An active mirror is represented by a ringed node. Each combination of active mirrors generates a unique uniform polytope. Uniform polytopes are named in relation to the regular polytopes in each family. Some families have two regular constructors and thus may be named in two equally valid ways.

Here are the primary operators available for constructing and naming the uniform 7-polytopes.

The prismatic forms and bifurcating graphs can use the same truncation indexing notation, but require an explicit numbering system on the nodes for clarity.

class="wikitable"
Operation

!Extended
Schläfli symbol

!width=110|Coxeter-
Dynkin
diagram

!Description

Parent

|width=70| t0{p,q,r,s,t,u}

|{{CDD|node_1|p|node|q|node|r|node|s|node|t|node|u|node}}

| Any regular 7-polytope

Rectified

| t1{p,q,r,s,t,u}

|{{CDD|node|p|node_1|q|node|r|node|s|node|t|node|u|node}}

|The edges are fully truncated into single points. The 7-polytope now has the combined faces of the parent and dual.

Birectified

| t2{p,q,r,s,t,u}

|{{CDD|node|p|node|q|node_1|r|node|s|node|t|node|u|node}}

|Birectification reduces cells to their duals.

Truncated

| t0,1{p,q,r,s,t,u}

|{{CDD|node_1|p|node_1|q|node|r|node|s|node|t|node|u|node}}

|Each original vertex is cut off, with a new face filling the gap. Truncation has a degree of freedom, which has one solution that creates a uniform truncated 7-polytope. The 7-polytope has its original faces doubled in sides, and contains the faces of the dual.
400px

Bitruncated

| t1,2{p,q,r,s,t,u}

|{{CDD|node|p|node_1|q|node_1|r|node|s|node|t|node|u|node}}

|Bitrunction transforms cells to their dual truncation.

Tritruncated

| t2,3{p,q,r,s,t,u}

|{{CDD|node|p|node|q|node_1|r|node_1|s|node|t|node|u|node}}

|Tritruncation transforms 4-faces to their dual truncation.

Cantellated

| t0,2{p,q,r,s,t,u}

|{{CDD|node_1|p|node|q|node_1|r|node|s|node|t|node|u|node}}

|In addition to vertex truncation, each original edge is beveled with new rectangular faces appearing in their place. A uniform cantellation is halfway between both the parent and dual forms.
400px

Bicantellated

| t1,3{p,q,r,s,t,u}

|{{CDD|node|p|node_1|q|node|r|node_1|s|node|t|node|u|node}}

|In addition to vertex truncation, each original edge is beveled with new rectangular faces appearing in their place. A uniform cantellation is halfway between both the parent and dual forms.

Runcinated

| t0,3{p,q,r,s,t,u}

|{{CDD|node_1|p|node|q|node|r|node_1|s|node|t|node|u|node}}

|Runcination reduces cells and creates new cells at the vertices and edges.

Biruncinated

| t1,4{p,q,r,s,t,u}

|{{CDD|node|p|node_1|q|node|r|node|s|node_1|t|node|u|node}}

|Runcination reduces cells and creates new cells at the vertices and edges.

Stericated

| t0,4{p,q,r,s,t,u}

|{{CDD|node_1|p|node|q|node|r|node|s|node_1|t|node|u|node}}

|Sterication reduces 4-faces and creates new 4-faces at the vertices, edges, and faces in the gaps.

Pentellated

| t0,5{p,q,r,s,t,u}

|{{CDD|node_1|p|node|q|node|r|node|s|node|t|node_1|u|node}}

|Pentellation reduces 5-faces and creates new 5-faces at the vertices, edges, faces, and cells in the gaps.

Hexicated

| t0,6{p,q,r,s,t,u}

|{{CDD|node_1|p|node|q|node|r|node|s|node|t|node|u|node_1}}

|Hexication reduces 6-faces and creates new 6-faces at the vertices, edges, faces, cells, and 4-faces in the gaps. (expansion operation for 7-polytopes)

Omnitruncated

| t0,1,2,3,4,5,6{p,q,r,s,t,u}

|{{CDD|node_1|p|node_1|q|node_1|r|node_1|s|node_1|t|node_1|u|node_1}}

|All six operators, truncation, cantellation, runcination, sterication, pentellation, and hexication are applied.

References

{{reflist}}

  • T. Gosset: On the Regular and Semi-Regular Figures in Space of n Dimensions, Messenger of Mathematics, Macmillan, 1900
  • A. Boole Stott: Geometrical deduction of semiregular from regular polytopes and space fillings, Verhandelingen of the Koninklijke academy van Wetenschappen width unit Amsterdam, Eerste Sectie 11,1, Amsterdam, 1910
  • H.S.M. Coxeter:
  • H.S.M. Coxeter, M.S. Longuet-Higgins und J.C.P. Miller: Uniform Polyhedra, Philosophical Transactions of the Royal Society of London, Londne, 1954
  • H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
  • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, {{isbn|978-0-471-01003-6}} http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471010030.html
  • (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
  • (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
  • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
  • N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D. Dissertation, University of Toronto, 1966
  • {{KlitzingPolytopes|polyexa.htm|7D|uniform polytopes (polyexa)}}