Cantitruncated 24-cell honeycomb

class="wikitable" align="right" style="margin-left:10px" width="320"

!bgcolor=#e7dcc3 colspan=2|Cantitruncated 24-cell honeycomb

bgcolor=#ffffff align=center colspan=2|(No image)
bgcolor=#e7dcc3|TypeUniform 4-honeycomb
bgcolor=#e7dcc3|Schläfli symboltr{3,4,3,3}
bgcolor=#e7dcc3|Coxeter-Dynkin diagrams{{CDD|node_1|3|node_1|4|node_1|3|node|3|node}}
bgcolor=#e7dcc3|4-face typet{4,3,3}
tr{3,4,3}
{3,3}×{}
bgcolor=#e7dcc3|Cell type
bgcolor=#e7dcc3|Face type
bgcolor=#e7dcc3|Vertex figure
bgcolor=#e7dcc3|Coxeter groups{\tilde{F}}_4, [3,4,3,3]
bgcolor=#e7dcc3|PropertiesVertex transitive

In four-dimensional Euclidean geometry, the cantitruncated 24-cell honeycomb is a uniform space-filling honeycomb. It can be seen as a cantitruncation of the regular 24-cell honeycomb, containing truncated tesseract, cantitruncated 24-cell, and tetrahedral prism cells.

Alternate names

  • Cantellated icositetrachoric tetracomb/honeycomb
  • Great rhombated icositetrachoric tetracomb (gricot)
  • Great prismatodisicositetrachoric tetracomb

Related honeycombs

{{F4 honeycombs}}

See also

References

  • Coxeter, H.S.M. Regular Polytopes, (3rd edition, 1973), Dover edition, {{ISBN|0-486-61480-8}} p. 296, Table II: Regular honeycombs
  • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, {{ISBN|978-0-471-01003-6}} [http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471010030.html]
  • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
  • George Olshevsky, Uniform Panoploid Tetracombs, Manuscript (2006) (Complete list of 11 convex uniform tilings, 28 convex uniform honeycombs, and 143 convex uniform tetracombs) Model 114
  • {{KlitzingPolytopes|flat.htm|4D|Euclidean tesselations}} o3o3x4x3x - gricot - O114

{{Honeycombs}}

Category:5-polytopes

Category:Honeycombs (geometry)

Category:Truncated tilings