Cantitruncated 24-cell honeycomb
class="wikitable" align="right" style="margin-left:10px" width="320"
!bgcolor=#e7dcc3 colspan=2|Cantitruncated 24-cell honeycomb | |
bgcolor=#ffffff align=center colspan=2|(No image) | |
bgcolor=#e7dcc3|Type | Uniform 4-honeycomb |
bgcolor=#e7dcc3|Schläfli symbol | tr{3,4,3,3} |
bgcolor=#e7dcc3|Coxeter-Dynkin diagrams | {{CDD|node_1|3|node_1|4|node_1|3|node|3|node}} |
bgcolor=#e7dcc3|4-face type | t{4,3,3} tr{3,4,3} {3,3}×{} |
bgcolor=#e7dcc3|Cell type | |
bgcolor=#e7dcc3|Face type | |
bgcolor=#e7dcc3|Vertex figure | |
bgcolor=#e7dcc3|Coxeter groups | , [3,4,3,3] |
bgcolor=#e7dcc3|Properties | Vertex transitive |
In four-dimensional Euclidean geometry, the cantitruncated 24-cell honeycomb is a uniform space-filling honeycomb. It can be seen as a cantitruncation of the regular 24-cell honeycomb, containing truncated tesseract, cantitruncated 24-cell, and tetrahedral prism cells.
Alternate names
- Cantellated icositetrachoric tetracomb/honeycomb
- Great rhombated icositetrachoric tetracomb (gricot)
- Great prismatodisicositetrachoric tetracomb
Related honeycombs
{{F4 honeycombs}}
See also
Regular and uniform honeycombs in 4-space:
References
- Coxeter, H.S.M. Regular Polytopes, (3rd edition, 1973), Dover edition, {{ISBN|0-486-61480-8}} p. 296, Table II: Regular honeycombs
- Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, {{ISBN|978-0-471-01003-6}} [http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471010030.html]
- (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
- George Olshevsky, Uniform Panoploid Tetracombs, Manuscript (2006) (Complete list of 11 convex uniform tilings, 28 convex uniform honeycombs, and 143 convex uniform tetracombs) Model 114
- {{KlitzingPolytopes|flat.htm|4D|Euclidean tesselations}} o3o3x4x3x - gricot - O114
{{Honeycombs}}