Carbonate chloride
{{short description|Class of chemical compounds}}
The carbonate chlorides are double salts containing both carbonate and chloride anions. Quite a few minerals are known. Several artificial compounds have been made. Some complexes have both carbonate and chloride ligands. They are part of the family of {{chem name|halocarbonates}}. In turn these {{chem name|halocarbonates}} are a part of mixed anion materials.
The carbonate chlorides do not have a bond from chlorine to carbon, however "chlorocarbonate" has also been used to refer to the chloroformates which contain the group ClC(O)O-.
Formation
= Natural =
Scapolite is produced in nature by metasomatism, where hot high pressure water solutions of carbon dioxide and sodium chloride modify plagioclase.{{Cite journal|last1=Harlov|first1=D. E.|last2=Budzyn|first2=B.|date=December 2008|title=The stability of Cl-CO3-scapolite relative to plagioclase + CaCO3 + CaSO4 in the presence of NaCl brines as a function of P-T-XNaCl|journal=AGUFM|language=en|volume=2008|pages=V31C–2156–2156|bibcode=2008AGUFM.V31C2156H}}
Chloroartinite is found in Sorel cements exposed to air.{{Cite journal|last1=Dinnebier|first1=Robert E.|last2=Jansen|first2=Martin|date=2008-12-01|title=The Crystal Structure of [Mg2(H2O)6(HCO3)3]+Cl–, Containing a Magnesium-based Hetero-polycation|journal=Zeitschrift für Naturforschung B|volume=63|issue=12|pages=1347–1351|doi=10.1515/znb-2008-1201|s2cid=196866126|issn=1865-7117|doi-access=free}}
Minerals
In 2016 27 chloride containing carbonate minerals were known.
class="wikitable"
!name !formula !crystal system !space group !unit cell !density !Optics refractive index !Raman spectrum !comments !reference |
Alexkhomyakovite
|K6(Ca2Na)(CO3)5Cl∙6H2O |hexagonal |P63/mcm |a=9.2691, c=15.8419, V=1178.72 Z = 2 |2.25 |uniaxial (–), ω=1.543, ε=1.476 | | |
Ashburtonite
|HPb4Cu4(Si4O12)(HCO3)4(OH)4Cl | | | | | | | |
Balliranoite
|(Na,K)6Ca2(Si6Al6O24)Cl2(CO3) |hexagonal |P63 |a=12.695 c=5.325 V=743.2 Z=1 |2.48 |uniaxial (+), ω=1.523, ε=1.525 | | |
Barstowite
|Pb4(CO3)Cl6.H2O | | | | | | | | |
Chlorartinite
|Mg2(CO3)Cl(OH).3H2O | | | | | | | | |
Chlormagaluminite
|(Mg,Fe2+)4Al2(OH)12(Cl, 0.5 CO3)2·2H2O | |6/mmm | |1.98-2.09 |ε=1.560 ω=1.540 | | |
Davyne
| | | | | | | |can substitute CO3 for SO4 |
Decrespignyite-(Y)
|Y4Cu(CO3)4Cl(OH)5·2H2O | | | | | |V4 bending 694, 718 and 746; V2 bending 791, 815, 837 and 849;v3 antisymmetric stretching 1391, 1414, 1489, 1547; also OH stretching{{Cite journal|last1=Frost|first1=Ray L.|last2=Palmer|first2=Sara J.|date=2011-11-15|title=Raman spectrum of decrespignyite [(Y,REE)4Cu(CO3)4Cl(OH)5·2H2O] and its relation with those of other halogenated carbonates including bastnasite, hydroxybastnasite, parisite and northupite|journal=Journal of Raman Spectroscopy|language=en|volume=42|issue=11|pages=2042–2048|doi=10.1002/jrs.2959|bibcode=2011JRSp...42.2042F}} |light blue |
Defernite
|Ca3CO3(OH,Cl)4.H2O | | | | | | | | |
Hanksite
|Na22K(SO4)9(CO3)2Cl |hexagonal |P63/m |a = 10.46 Å c = 21.19 Å; Z = 2 | | | | | |
iowaite
|Mg6Fe2(Cl,(CO3)0.5)(OH)16·4H2O | | | | | | | |
Kampfite
|Ba12(Si11Al5)O31(CO3)8Cl5 |monoclinic |Cc |a = 31.2329, b=5.2398, c=9.0966 β = 106.933° | |uniaxial (–), nω = 1.642 nε = 1.594 | | |
Marialite
|Na4(AlSi3O8)3(Cl2,CO3,SO4) | | | | | | | | |
Mineevite-(Y)
|Na25BaY2(CO3)11(HCO3)4(SO4)2F2Cl | | | | | | | |
Northupite
|Na3Mg(CO3)2Cl |octahedral |Fd3 |Z=16 | |1.514 |v4 bending 714; v3 antisymmetric stretching 1554 | |{{Cite book|url=https://books.google.com/books?id=yF_SDAAAQBAJ&pg=PA61|title=Refractive Indices of Solids|last1=Batsanov|first1=Stepan S.|last2=Ruchkin|first2=Evgeny D.|last3=Poroshina|first3=Inga A.|date=2016-08-10|publisher=Springer|isbn=978-981-10-0797-2|pages=61|language=en}} |
Phosgenite
|Pb2CO3Cl2 |tetragonal | |a=8.15 c=8.87 | | | | |
Reederite-(Y)
|Na15Y2(CO3)9(SO3F)Cl | | | | | | | |
Sakhaite (with Harkerite)
|Ca48Mg16Al(SiO3OH)4(CO3)16(BO3)28·(H2O)3(HCl)3or Ca12Mg4(BO3)7(CO3)4Cl(OH)2·H2O | | | | | | | |
Scapolite
|Ca3Na5[Al8Si16O48]Cl(CO3) | |P42/n |a=12.07899 c=7.583467 V=1106.443 | | | | |
Tatarskite
|Ca6Mg2(SO4)2(CO3)2(OH)4Cl4•7H2O |orthorhombic | | | |Biaxial (-) nα = 1.567 nβ = 1.654 nγ = 1.722 | | |
Tunisite
|NaCa2Al4(CO3)4Cl(OH)8 |tetragonal |P4/nmm |a=11.198 c=6.5637 Z=2 | | | | | |
Vasilyevite
|(Hg2)10O6I3Br2Cl(CO3) | |P1 overbar |a 9.344, b 10.653, c 18.265, α=93.262 β=90.548 γ=115.422° V=1638.3 Z=2 |9.57 | | | | |
Artificial
class="wikitable"
!name !formula ! !crystal system !unit cell in Å !density !comment !reference |
|K5Na2Cu24(CO3)16Cl3(OH)20•12H2O
| |cubic |F23 |a=15.463 V=3697.5 Z=2 |3.044 |dark blue |
|Y8O(OH)15(CO3)3Cl
|1197.88 |hexagonal |P63 |a=9.5089 c=14.6730 Z=2 V=1148.97 |3.462 | |
|Lu8O(OH)15(CO3)3Cl
|1886.32 |hexagonal |P63 |a=9.354 c=14.415 V=1092.3 Z=2 |5.689 |colourless |
|Y3(OH)6(CO3)Cl
| |cubic |Im3m |a=12.66 V=2032 Z=8 |3.035 |colourless |
|Dy3(OH)6(CO3)Cl
| |cubic |Im{{overbar|3}} |a=12.4754 V=1941.6 Z=8 |4.687 |colourless |
|Er3(OH)6(CO3)Cl
| |cubic |Im{{overbar|3}}m |a=12.4127 V=1912.5 Z=8 |4.857 |pink |
|K{Mg(H2O)6}2[Ru2(CO3)4Cl2]·4H2O
|889.06 |monoclinic |P21/c |a=11.6399 b=11.7048 c=11.8493 β=119.060 V=1411.6 Z=2 |2.092 |red-brown |
|K2[{Mg(H2O)4}2Ru2(CO3)4(H2O)Cl]Cl2·2H2O
|880.58 |orthorhombic |Fmm2 |a=14.392 b=15.699 c=10.741 V=2426.8 Z=4 |2.391 |dark brown |
trisodium cobalt dicarbonate chloride
|Na3Co(CO3)2Cl | |cubic |Fd{{overbar|3}} |a=13.9959 Z=16 |2.75 |spin-frustrated antiferromagnetic |{{Cite book|url=https://books.google.com/books?id=8rYlCYeLA8cC&pg=PA158|title=Spin Correlations and Excitations in Spin-frustrated Molecular and Molecule-based Magnets|last=Fu|first=Zhendong|date=2012|publisher=Forschungszentrum Jülich|isbn=978-3-89336-797-9|pages=97–165|language=en}} |
trisodium manganese dicarbonate chloride
|Na3Mn(CO3)2Cl | |cubic | |a=14.163 | |brown |
di-magnesium hexahydrate trihydrogencarbonate chloride
|Mg2(H2O)6(HCO3)3Cl | | |R{{overbar|3}}c |a=8.22215 c=39.5044 V=2312.85 Z=6 |1.61 |decompose 125 °C |
tripotassium tricalcium selenite tricarbonate chloride
|K3Ca3(SeO3)(CO3)3Cl |579.97 |hexagonal |P63 |a=10.543 c=7.060 V=706.0 Z=2 |2.991 | |
|LiBa9[Si10O25]Cl7(CO3)
| | | |Z=2 |3.85 |layer silicate |{{Cite web|url=https://materials.springer.com/isp/crystallographic/docs/sd_1005099|title=LiBa9[Si10O25]Cl7(CO3) (LiBa9Si10[CO3]Cl7O25) Crystal Structure - SpringerMaterials|website=materials.springer.com|access-date=2019-11-27}}{{Cite journal|last1=Il'Inets|first1=A. M.|last2=Nevskii|first2=N. N.|last3=Ilyukhin|first3=V. V.|last4=Belov|first4=N. V.|date=March 1983|title=A new type of infinite silicate radical [Si10O25] in the synthetic compound LiBa9[Si10O25]CI7(CO3)|journal=SPHD|language=en|volume=28|pages=213|bibcode=1983SPhD...28..213I}} |
|Ba3Cl4CO3
| |orthorhombic |Pnma |a=8.407, b=9.589, c=12.483 Z=4 | | |
Complexes
The "lanthaballs" are lanthanoid atom clusters held together by carbonate and other ligands. They can form chlorides. Examples are [La13(ccnm)6(CO3)14(H2O)6(phen)18] Cl3(CO3)·25H2O where ccnm is carbamoylcyanonitrosomethanide and phen is 1,10-phenanthroline. Praseodymium (Pr) or cerium (Ce) can substitute for lanthanum (La).{{Cite journal|last1=Chesman|first1=Anthony S. R.|last2=Turner|first2=David R.|last3=Langley|first3=Stuart K.|last4=Moubaraki|first4=Boujemaa|last5=Murray|first5=Keith S.|last6=Deacon|first6=Glen B.|last7=Batten|first7=Stuart R.|date=2015-02-02|title=Synthesis and Structure of New Lanthanoid Carbonate "Lanthaballs"|journal=Inorganic Chemistry|language=en|volume=54|issue=3|pages=792–800|doi=10.1021/ic5016115|pmid=25349948|issn=0020-1669}} Other lanthanide cluster compounds include :(H3O)6[Dy76O10(OH)138(OAc)20(L)44(H2O)34]•2CO3•4
Cl2•L•2OAc (nicknamed Dy76) and (H3O)6[Dy48O6(OH)84(OAc)4(L)15(hmp)18(H2O)20]•CO3•14Cl•2H2O (termed Dy48-T) with OAc=acetate, and L=3-furancarboxylate and Hhmp=2,2-bis(hydroxymethyl)propionic acid.{{cite journal |last1=Li |first1=Xiao-Yu |last2=Su |first2=Hai-Feng |last3=Li |first3=Quan-Wen |last4=Feng |first4=Rui |last5=Bai |first5=Hui-Yun |last6=Chen |first6=Hua-Yu |last7=Xu |first7=Jian |last8=Bu |first8=Xian-He |title=A Giant Dy76 Cluster: A Fused Bi-Nanopillar Structural Model for Lanthanide Clusters |journal=Angewandte Chemie International Edition |date=22 July 2019 |volume=58 |issue=30 |pages=10184–10188 |doi=10.1002/anie.201903817|pmid=31090998 |s2cid=155089115 }}
Platinum can form complexes with carbonate and chloride ligands, in addition to an amino acid. Examples include the platinum compound [Pt(gluH)Cl(CO3)]2.2H2O gluH=glutamic acid, and Na[Pt(gln)Cl2(CO3)].H2O gln=glutamine.{{Cite thesis|url=http://repository.yu.edu.jo:80/jspui/handle/123456789/12138|title=Synthesis and Characterization of Some Amino Acid Complexes with Metal Ions|last=Shatnawi|first=Razan Ahmad Mahmoud|date=November 2013|website=Yarmouk University|type=Article}} Rhodium complexes include Rh2(bipy)2(CO3)2Cl (bipy=bipyridine){{cite book |last1=Davidson |first1=G. |last2=Ebsworth |first2=E. A. V. |title=Spectroscopic Properties of Inorganic and Organometallic Compounds |date=2007 |publisher=Royal Society of Chemistry |isbn=978-1-84755-506-9 |page=294 |url=https://books.google.com/books?id=VG8oDwAAQBAJ&pg=PA294 |language=en}}