Carbonate chloride

{{short description|Class of chemical compounds}}

The carbonate chlorides are double salts containing both carbonate and chloride anions. Quite a few minerals are known. Several artificial compounds have been made. Some complexes have both carbonate and chloride ligands. They are part of the family of {{chem name|halocarbonates}}. In turn these {{chem name|halocarbonates}} are a part of mixed anion materials.

The carbonate chlorides do not have a bond from chlorine to carbon, however "chlorocarbonate" has also been used to refer to the chloroformates which contain the group ClC(O)O-.

Formation

= Natural =

Scapolite is produced in nature by metasomatism, where hot high pressure water solutions of carbon dioxide and sodium chloride modify plagioclase.{{Cite journal|last1=Harlov|first1=D. E.|last2=Budzyn|first2=B.|date=December 2008|title=The stability of Cl-CO3-scapolite relative to plagioclase + CaCO3 + CaSO4 in the presence of NaCl brines as a function of P-T-XNaCl|journal=AGUFM|language=en|volume=2008|pages=V31C–2156–2156|bibcode=2008AGUFM.V31C2156H}}

Chloroartinite is found in Sorel cements exposed to air.{{Cite journal|last1=Dinnebier|first1=Robert E.|last2=Jansen|first2=Martin|date=2008-12-01|title=The Crystal Structure of [Mg2(H2O)6(HCO3)3]+Cl–, Containing a Magnesium-based Hetero-polycation|journal=Zeitschrift für Naturforschung B|volume=63|issue=12|pages=1347–1351|doi=10.1515/znb-2008-1201|s2cid=196866126|issn=1865-7117|doi-access=free}}

Minerals

In 2016 27 chloride containing carbonate minerals were known.

class="wikitable"

!name

!formula

!crystal system

!space group

!unit cell

!density

!Optics refractive index

!Raman spectrum

!comments

!reference

Alexkhomyakovite

|K6(Ca2Na)(CO3)5Cl∙6H2O

|hexagonal

|P63/mcm

|a=9.2691, c=15.8419, V=1178.72 Z = 2

|2.25

|uniaxial (–), ω=1.543, ε=1.476

|

|

|{{Cite journal|last1=Pekov|first1=Igor V.|last2=Zubkova|first2=Natalia V.|last3=Yapaskurt|first3=Vasiliy O.|last4=Lykova|first4=Inna S.|last5=Chukanov|first5=Nikita V.|last6=Belakovskiy|first6=Dmitry I.|last7=Britvin|first7=Sergey N.|last8=Turchkova|first8=Anna G.|last9=Pushcharovsky|first9=Dmitry Y.|date=2019-02-21|title=Alexkhomyakovite, K6(Ca2Na)(CO3)5Cl∙6H2O, a new mineral from the Khibiny alkaline complex, Kola peninsula, Russia|journal=European Journal of Mineralogy|language=en|volume=31|issue=1|pages=135–143|doi=10.1127/ejm/2018/0030-2798|issn=0935-1221|bibcode=2019EJMin..31..135P|s2cid=134451790}}

Ashburtonite

|HPb4Cu4(Si4O12)(HCO3)4(OH)4Cl

|

|

|

|

|

|

|

|{{Cite journal|last1=Hazen|first1=Robert M.|last2=Hummer|first2=Daniel R.|last3=Hystad|first3=Grethe|last4=Downs|first4=Robert T.|last5=Golden|first5=Joshua J.|date=April 2016|title=Carbon mineral ecology: Predicting the undiscovered minerals of carbon|journal=American Mineralogist|language=en|volume=101|issue=4|pages=889–906|doi=10.2138/am-2016-5546|issn=0003-004X|bibcode=2016AmMin.101..889H|s2cid=741788}}

Balliranoite

|(Na,K)6Ca2(Si6Al6O24)Cl2(CO3)

|hexagonal

|P63

|a=12.695 c=5.325 V=743.2 Z=1

|2.48

|uniaxial (+), ω=1.523, ε=1.525

|

|

|{{Cite journal|last1=Chukanov|first1=Nikita V.|last2=Zubkova|first2=Natalia V.|last3=Pekov|first3=Igor V.|last4=Olysych|first4=Lyudmila V.|last5=Bonaccorsi|first5=Elena|last6=Pushcharovsky|first6=Dmitry YU.|date=2010-03-18|title=Balliranoite, (Na,K)6Ca2(Si6Al6O24)Cl2(CO3), a new cancrinite-group mineral from Monte Somma Vesuvio volcanic complex, Italy|journal=European Journal of Mineralogy|language=en|volume=22|issue=1|pages=113–119|doi=10.1127/0935-1221/2010/0022-1983|issn=0935-1221|bibcode=2010EJMin..22..113C}}

Barstowite

|Pb4(CO3)Cl6.H2O

|

|

|

|

|

|

|

|

Chlorartinite

|Mg2(CO3)Cl(OH).3H2O

|

|

|

|

|

|

|

|

Chlormagaluminite

|(Mg,Fe2+)4Al2(OH)12(Cl, 0.5 CO3)2·2H2O

|

|6/mmm

|

|1.98-2.09

|ε=1.560 ω=1.540

|

|

|{{Cite journal|last1=Kashayev|first1=A. A.|last2=Feoktistov|first2=G. D.|last3=Petrova|first3=S. V.|date=July 1983|title=Chlormagaluminite (Mg, Fe 2+ ) 4 Al 2 (OH) 12 (Cl, 1/2 CO 3 ) 2 ·2H 2 O-a new mineral of the manasseite-sjogrenite group|journal=International Geology Review|language=en|volume=25|issue=7|pages=848–853|doi=10.1080/00206818309466774|issn=0020-6814|bibcode=1983IGRv...25..848K}}

Davyne

|

|

|

|

|

|

|

|can substitute CO3 for SO4

|{{Cite journal|last=BALLIRANO|first=PAOLO|date=1998|title=CARBONATEGROUPSIN DAWNE:STRUCTURAL AND CRYSTAL.CHEMICAL CONSIDERATIONs|url=http://rruff.info/doclib/cm/vol36/CM36_1285.pdf|journal=The Canadian Mineralogist|volume=36|pages=1285–1292}}

Decrespignyite-(Y)

|Y4Cu(CO3)4Cl(OH)5·2H2O

|

|

|

|

|

|V4 bending 694, 718 and 746; V2 bending 791, 815, 837 and 849;v3 antisymmetric stretching 1391, 1414, 1489, 1547; also OH stretching{{Cite journal|last1=Frost|first1=Ray L.|last2=Palmer|first2=Sara J.|date=2011-11-15|title=Raman spectrum of decrespignyite [(Y,REE)4Cu(CO3)4Cl(OH)5·2H2O] and its relation with those of other halogenated carbonates including bastnasite, hydroxybastnasite, parisite and northupite|journal=Journal of Raman Spectroscopy|language=en|volume=42|issue=11|pages=2042–2048|doi=10.1002/jrs.2959|bibcode=2011JRSp...42.2042F}}

|light blue

|{{cite journal |last1=Wallwork |first1=K. |last2=Kolitsch |first2=U. |last3=Pring |first3=A. |last4=Nasdala |first4=L. |title=Decrespignyite-(Y), a new copper yttrium rare earth carbonate chloride hydrate from Paratoo, South Australia |journal=Mineralogical Magazine |date=February 2002 |volume=66 |issue=1 |pages=181–188 |doi=10.1180/0026461026610021 |language=en |issn=0026-461X|bibcode=2002MinM...66..181W |s2cid=4820053 }}

Defernite

|Ca3CO3(OH,Cl)4.H2O

|

|

|

|

|

|

|

|

Hanksite

|Na22K(SO4)9(CO3)2Cl

|hexagonal

|P63/m

|a = 10.46 Å

c = 21.19 Å; Z = 2

|

|

|

|

|

iowaite

|Mg6Fe2(Cl,(CO3)0.5)(OH)16·4H2O

|

|

|

|

|

|

|

|{{Cite journal|last1=Frost|first1=R. L.|last2=Erickson|first2=K. L.|date=2004|title=Thermal decomposition of natural iowaite|journal=Journal of Thermal Analysis and Calorimetry|language=en|volume=78|issue=2|pages=367–373|doi=10.1023/B:JTAN.0000046103.00586.61|s2cid=97065830|issn=1388-6150|url=https://eprints.qut.edu.au/823/1/Thermal_analysis_of_natural_iowaite2.pdf}}

Kampfite

|Ba12(Si11Al5)O31(CO3)8Cl5

|monoclinic

|Cc

|a = 31.2329, b=5.2398, c=9.0966

β = 106.933°

|

|uniaxial (–), nω = 1.642 nε = 1.594

|

|

|{{Cite web|url=https://www.mindat.org/min-10386.html|title=Kampfite: Mineral information, data and localities.|website=www.mindat.org|access-date=2019-11-26}}

Marialite

|Na4(AlSi3O8)3(Cl2,CO3,SO4)

|

|

|

|

|

|

|

|

Mineevite-(Y)

|Na25BaY2(CO3)11(HCO3)4(SO4)2F2Cl

|

|

|

|

|

|

|

|{{Cite book|url=https://books.google.com/books?id=GtBJDwAAQBAJ&pg=PA135|title=The Role of Halogens in Terrestrial and Extraterrestrial Geochemical Processes: Surface, Crust, and Mantle|last1=Harlov|first1=Daniel E.|last2=Aranovich|first2=Leonid|date=2018-01-30|publisher=Springer|isbn=978-3-319-61667-4|language=en}}

Northupite

|Na3Mg(CO3)2Cl

|octahedral

|Fd3

|Z=16

|

|1.514

|v4 bending 714; v3 antisymmetric stretching 1554

|

|{{Cite book|url=https://books.google.com/books?id=yF_SDAAAQBAJ&pg=PA61|title=Refractive Indices of Solids|last1=Batsanov|first1=Stepan S.|last2=Ruchkin|first2=Evgeny D.|last3=Poroshina|first3=Inga A.|date=2016-08-10|publisher=Springer|isbn=978-981-10-0797-2|pages=61|language=en}}

Phosgenite

|Pb2CO3Cl2

|tetragonal

|

|a=8.15 c=8.87

|

|

|

|

|{{Cite journal|last=Ivan Kostov, Ruslan I. Kostov|date=2016|title=Systematics and crystal genesis of carbonate minerals|url=http://www.mgu.bg/annual/public_html/2006/bg/svityk1/dokladi_pdf/kostov.pdf|journal=ANNUAL OF THE UNIVERSITY OF MINING AND GEOLOGY "ST. IVAN RILSKI", Part I, Geology and Geophysics|volume=49|pages=111–118}}

Reederite-(Y)

|Na15Y2(CO3)9(SO3F)Cl

|

|

|

|

|

|

|

|

Sakhaite (with Harkerite)

|Ca48Mg16Al(SiO3OH)4(CO3)16(BO3)28·(H2O)3(HCl)3or Ca12Mg4(BO3)7(CO3)4Cl(OH)2·H2O

|

|

|

|

|

|

|

|

Scapolite

|Ca3Na5[Al8Si16O48]Cl(CO3)

|

|P42/n

|a=12.07899 c=7.583467 V=1106.443

|

|

|

|

|{{Cite journal|last1=Antao|first1=S. M.|last2=Hassan|first2=I.|date=2011-04-01|title=COMPLETE Al-Si ORDER IN SCAPOLITE Me37.5, IDEALLY Ca3Na5[Al8Si16O48]Cl(CO3), AND IMPLICATIONS FOR ANTIPHASE DOMAIN BOUNDARIES (APBs)|journal=The Canadian Mineralogist|language=en|volume=49|issue=2|pages=581–586|doi=10.3749/canmin.49.2.581|bibcode=2011CaMin..49..581A |issn=0008-4476}}

Tatarskite

|Ca6Mg2(SO4)2(CO3)2(OH)4Cl4•7H2O

|orthorhombic

|

|

|

|Biaxial (-) nα = 1.567 nβ = 1.654 nγ = 1.722

|

|

|{{cite web |title=Tatarskite: Mineral information, data and localities. |url=https://www.mindat.org/min-3894.html |website=www.mindat.org |access-date=10 May 2020}}

Tunisite

|NaCa2Al4(CO3)4Cl(OH)8

|tetragonal

|P4/nmm

|a=11.198 c=6.5637 Z=2

|

|

|

|

|

Vasilyevite

|(Hg2)10O6I3Br2Cl(CO3)

|

|P1 overbar

|a 9.344, b 10.653, c 18.265, α=93.262 β=90.548 γ=115.422° V=1638.3 Z=2

|9.57

|

|

|

|

Artificial

class="wikitable"

!name

!formula

!

!crystal system

!space group

!unit cell in Å

!density

!comment

!reference

|K5Na2Cu24(CO3)16Cl3(OH)20•12H2O

|

|cubic

|F23

|a=15.463 V=3697.5 Z=2

|3.044

|dark blue

|{{cite journal |last1=Sokolova |first1=Elena |last2=Hawthorne |first2=Frank C. |title=The Crystal Structure Of An Anthropogenic Cu–k–na–hydro-Hydroxyl–carbonate–chloride From Johanngeorgenstadt, Saxony, Germany |journal=The Canadian Mineralogist |date=2003 |volume=41 |issue=4 |pages=929–936|doi=10.2113/gscanmin.41.4.929 |bibcode=2003CaMin..41..929S }}

|Y8O(OH)15(CO3)3Cl

|1197.88

|hexagonal

|P63

|a=9.5089 c=14.6730 Z=2 V=1148.97

|3.462

|

|{{Cite journal|last1=Zhang|first1=Yiting|last2=Long|first2=Ying|last3=Dong|first3=Xuehua|last4=Wang|first4=Lei|last5=Huang|first5=Ling|last6=Zeng|first6=Hongmei|last7=Lin|first7=Zhien|last8=Wang|first8=Xin|last9=Zou|first9=Guohong|date=2019|title=Y 8 O(OH) 15 (CO 3 ) 3 Cl: an excellent short-wave UV nonlinear optical material exhibiting an infrequent three-dimensional inorganic cationic framework|journal=Chemical Communications|language=en|volume=55|issue=31|pages=4538–4541|doi=10.1039/C9CC00581A|pmid=30924839|s2cid=85566544|issn=1359-7345}}

|Lu8O(OH)15(CO3)3Cl

|1886.32

|hexagonal

|P63

|a=9.354 c=14.415 V=1092.3 Z=2

|5.689

|colourless

|{{Cite journal|last1=Cao|first1=Liling|last2=Song|first2=Yunxia|last3=Peng|first3=Guang|last4=Luo|first4=Min|last5=Yang|first5=Yi|last6=Lin|first6=Chen-sheng|last7=Zhao|first7=Dan|last8=Xu|first8=Feng|last9=Lin|first9=Zheshuai|last10=Ye|first10=Ning|date=2019-03-26|title=Refractive Index Modulates Second-Harmonic Responses in RE 8 O(CO 3 ) 3 (OH) 15 X (RE = Y, Lu; X = Cl, Br): Rare-Earth Halide Carbonates as Ultraviolet Nonlinear Optical Materials|journal=Chemistry of Materials|language=en|volume=31|issue=6|pages=2130–2137|doi=10.1021/acs.chemmater.9b00068|s2cid=107652980|issn=0897-4756}}

|Y3(OH)6(CO3)Cl

|

|cubic

|Im3m

|a=12.66 V=2032 Z=8

|3.035

|colourless

|{{Cite journal|last1=Wang|first1=Yanyan|last2=Han|first2=Tian|last3=Ding|first3=You-Song|last4=Zheng|first4=Zhiping|last5=Zheng|first5=Yan-Zhen|date=2016|title=Sodalite-like rare-earth carbonates: a study of structural transformation and diluted magnetism|journal=Dalton Transactions|language=en|volume=45|issue=3|pages=1103–1110|doi=10.1039/C5DT03314D|pmid=26660232|issn=1477-9226|doi-access=free}}

|Dy3(OH)6(CO3)Cl

|

|cubic

|Im{{overbar|3}}

|a=12.4754 V=1941.6 Z=8

|4.687

|colourless

|

|Er3(OH)6(CO3)Cl

|

|cubic

|Im{{overbar|3}}m

|a=12.4127 V=1912.5 Z=8

|4.857

|pink

|

|K{Mg(H2O)6}2[Ru2(CO3)4Cl2]·4H2O

|889.06

|monoclinic

|P21/c

|a=11.6399 b=11.7048 c=11.8493 β=119.060 V=1411.6 Z=2

|2.092

|red-brown

|{{Cite journal|last1=Yang|first1=Jian-Hui|last2=Cheng|first2=Ru-Mei|last3=Jia|first3=Yan-Yan|last4=Jin|first4=Jin|last5=Yang|first5=Bing-Bing|last6=Cao|first6=Zhi|last7=Liu|first7=Bin|date=2016|title=Chlorine and temperature directed self-assembly of Mg–Ru 2 ( ii , iii ) carbonates and particle size dependent magnetic properties|journal=Dalton Transactions|language=en|volume=45|issue=7|pages=2945–2954|doi=10.1039/C5DT04463D|pmid=26750871|issn=1477-9226}}

|K2[{Mg(H2O)4}2Ru2(CO3)4(H2O)Cl]Cl2·2H2O

|880.58

|orthorhombic

|Fmm2

|a=14.392 b=15.699 c=10.741 V=2426.8 Z=4

|2.391

|dark brown

|

trisodium cobalt dicarbonate chloride

|Na3Co(CO3)2Cl

|

|cubic

|Fd{{overbar|3}}

|a=13.9959 Z=16

|2.75

|spin-frustrated antiferromagnetic

|{{Cite book|url=https://books.google.com/books?id=8rYlCYeLA8cC&pg=PA158|title=Spin Correlations and Excitations in Spin-frustrated Molecular and Molecule-based Magnets|last=Fu|first=Zhendong|date=2012|publisher=Forschungszentrum Jülich|isbn=978-3-89336-797-9|pages=97–165|language=en}}

trisodium manganese dicarbonate chloride

|Na3Mn(CO3)2Cl

|

|cubic

|

|a=14.163

|

|brown

|{{Cite journal|last1=Nawa|first1=Kazuhiro|last2=Okuyama|first2=Daisuke|last3=Avdeev|first3=Maxim|last4=Nojiri|first4=Hiroyuki|last5=Yoshida|first5=Masahiro|last6=Ueta|first6=Daichi|last7=Yoshizawa|first7=Hideki|last8=Sato|first8=Taku J.|date=2018-10-18|title=Degenerate ground state in the classical pyrochlore antiferromagnet Na 3 Mn ( CO 3 ) 2 Cl|journal=Physical Review B|language=en|volume=98|issue=14|pages=144426|doi=10.1103/PhysRevB.98.144426|issn=2469-9950|bibcode=2018PhRvB..98n4426N|arxiv=1810.05126|s2cid=119245230}}

di-magnesium hexahydrate trihydrogencarbonate chloride

|Mg2(H2O)6(HCO3)3Cl

|

|

|R{{overbar|3}}c

|a=8.22215 c=39.5044 V=2312.85 Z=6

|1.61

|decompose 125 °C

|

tripotassium tricalcium selenite tricarbonate chloride

|K3Ca3(SeO3)(CO3)3Cl

|579.97

|hexagonal

|P63

|a=10.543 c=7.060 V=706.0 Z=2

|2.991

|

|{{Cite thesis|last=Schmitz|first=Dieter|date=2001|title=Synthese, Charakterisierung und Bildungsprinzipien von sauren und neutralen Oxoselenaten(IV) und Oxoselenat(IV)-hydraten|url=https://dspace.ub.uni-siegen.de/handle/ubsi/166|language=de|pages=182|via=Fachbereich 8}}

|LiBa9[Si10O25]Cl7(CO3)

|

|

|

|Z=2

|3.85

|layer silicate

|{{Cite web|url=https://materials.springer.com/isp/crystallographic/docs/sd_1005099|title=LiBa9[Si10O25]Cl7(CO3) (LiBa9Si10[CO3]Cl7O25) Crystal Structure - SpringerMaterials|website=materials.springer.com|access-date=2019-11-27}}{{Cite journal|last1=Il'Inets|first1=A. M.|last2=Nevskii|first2=N. N.|last3=Ilyukhin|first3=V. V.|last4=Belov|first4=N. V.|date=March 1983|title=A new type of infinite silicate radical [Si10O25] in the synthetic compound LiBa9[Si10O25]CI7(CO3)|journal=SPHD|language=en|volume=28|pages=213|bibcode=1983SPhD...28..213I}}

|Ba3Cl4CO3

|

|orthorhombic

|Pnma

|a=8.407, b=9.589, c=12.483 Z=4

|

|

|{{Cite journal|last1=Leyva-Bailen|first1=Patricia|last2=Vaqueiro|first2=Paz|last3=Powell|first3=Anthony V.|date=September 2009|title=Ionothermal synthesis of the mixed-anion material, Ba3Cl4CO3|journal=Journal of Solid State Chemistry|language=en|volume=182|issue=9|pages=2333–2337|doi=10.1016/j.jssc.2009.06.019|bibcode=2009JSSCh.182.2333L}}

Complexes

The "lanthaballs" are lanthanoid atom clusters held together by carbonate and other ligands. They can form chlorides. Examples are [La13(ccnm)6(CO3)14(H2O)6(phen)18] Cl3(CO3)·25H2O where ccnm is carbamoylcyanonitrosomethanide and phen is 1,10-phenanthroline. Praseodymium (Pr) or cerium (Ce) can substitute for lanthanum (La).{{Cite journal|last1=Chesman|first1=Anthony S. R.|last2=Turner|first2=David R.|last3=Langley|first3=Stuart K.|last4=Moubaraki|first4=Boujemaa|last5=Murray|first5=Keith S.|last6=Deacon|first6=Glen B.|last7=Batten|first7=Stuart R.|date=2015-02-02|title=Synthesis and Structure of New Lanthanoid Carbonate "Lanthaballs"|journal=Inorganic Chemistry|language=en|volume=54|issue=3|pages=792–800|doi=10.1021/ic5016115|pmid=25349948|issn=0020-1669}} Other lanthanide cluster compounds include :(H3O)6[Dy76O10(OH)138(OAc)20(L)44(H2O)34]•2CO3•4

Cl2•L•2OAc (nicknamed Dy76) and (H3O)6[Dy48O6(OH)84(OAc)4(L)15(hmp)18(H2O)20]•CO3•14Cl•2H2O (termed Dy48-T) with OAc=acetate, and L=3-furancarboxylate and Hhmp=2,2-bis(hydroxymethyl)propionic acid.{{cite journal |last1=Li |first1=Xiao-Yu |last2=Su |first2=Hai-Feng |last3=Li |first3=Quan-Wen |last4=Feng |first4=Rui |last5=Bai |first5=Hui-Yun |last6=Chen |first6=Hua-Yu |last7=Xu |first7=Jian |last8=Bu |first8=Xian-He |title=A Giant Dy76 Cluster: A Fused Bi-Nanopillar Structural Model for Lanthanide Clusters |journal=Angewandte Chemie International Edition |date=22 July 2019 |volume=58 |issue=30 |pages=10184–10188 |doi=10.1002/anie.201903817|pmid=31090998 |s2cid=155089115 }}

Platinum can form complexes with carbonate and chloride ligands, in addition to an amino acid. Examples include the platinum compound [Pt(gluH)Cl(CO3)]2.2H2O gluH=glutamic acid, and Na[Pt(gln)Cl2(CO3)].H2O gln=glutamine.{{Cite thesis|url=http://repository.yu.edu.jo:80/jspui/handle/123456789/12138|title=Synthesis and Characterization of Some Amino Acid Complexes with Metal Ions|last=Shatnawi|first=Razan Ahmad Mahmoud|date=November 2013|website=Yarmouk University|type=Article}} Rhodium complexes include Rh2(bipy)2(CO3)2Cl (bipy=bipyridine){{cite book |last1=Davidson |first1=G. |last2=Ebsworth |first2=E. A. V. |title=Spectroscopic Properties of Inorganic and Organometallic Compounds |date=2007 |publisher=Royal Society of Chemistry |isbn=978-1-84755-506-9 |page=294 |url=https://books.google.com/books?id=VG8oDwAAQBAJ&pg=PA294 |language=en}}

References