Charlier polynomials
{{inline |date=May 2024}}
In mathematics, Charlier polynomials (also called Poisson–Charlier polynomials) are a family of orthogonal polynomials introduced by Carl Charlier.
They are given in terms of the generalized hypergeometric function by
:
where are generalized Laguerre polynomials. They satisfy the orthogonality relation
:
They form a Sheffer sequence related to the Poisson process, similar to how Hermite polynomials relate to the Brownian motion.
See also
- Wilson polynomials, a generalization of Charlier polynomials.
References
- C. V. L. Charlier (1905–1906) Über die Darstellung willkürlicher Funktionen, Ark. Mat. Astr. och Fysic 2, 20.
- {{dlmf|id=18.19|title=Hahn Class: Definitions|first=Tom H. |last=Koornwinder|first2=Roderick S. C.|last2= Wong|first3=Roelof |last3=Koekoek||first4=René F. |last4=Swarttouw}}
- {{Citation | authorlink=Gábor Szegő | last1=Szegő | first1=Gabor | title=Orthogonal Polynomials | publisher=Colloquium Publications – American Mathematical Society | isbn=978-0-8218-1023-1 | mr=0372517 | year=1939}}
Category:Orthogonal polynomials
{{polynomial-stub}}