Laguerre polynomials

{{Short description|Sequence of differential equation solutions}}

File:Complex color plot of the Laguerre polynomial L n(x) with n as -1 divided by 9 and x as z to the power of 4 from -2-2i to 2+2i.svg

In mathematics, the Laguerre polynomials, named after Edmond Laguerre (1834–1886), are nontrivial solutions of Laguerre's differential equation:

xy'' + (1 - x)y' + ny = 0,\

y = y(x)

which is a second-order linear differential equation. This equation has nonsingular solutions only if {{mvar|n}} is a non-negative integer.

Sometimes the name Laguerre polynomials is used for solutions of

xy'' + (\alpha + 1 - x)y' + ny = 0~.

where {{mvar|n}} is still a non-negative integer.

Then they are also named generalized Laguerre polynomials, as will be done here (alternatively associated Laguerre polynomials or, rarely, Sonine polynomials, after their inventor{{cite journal|title=Recherches sur les fonctions cylindriques et le développement des fonctions continues en séries|author=N. Sonine|journal=Math. Ann.|date=1880|volume=16| issue=1|pages=1–80|doi=10.1007/BF01459227|s2cid=121602983|url=http://www.digizeitschriften.de/dms/img/?PPN=PPN235181684_0016&DMDID=dmdlog8}} Nikolay Yakovlevich Sonin).

More generally, a Laguerre function is a solution when {{mvar|n}} is not necessarily a non-negative integer.

The Laguerre polynomials are also used for Gauss–Laguerre quadrature to numerically compute integrals of the form

\int_0^\infty f(x) e^{-x} \, dx.

These polynomials, usually denoted {{math|L0}}, {{math|L1}}, ..., are a polynomial sequence which may be defined by the Rodrigues formula,

L_n(x)=\frac{e^x}{n!}\frac{d^n}{dx^n}\left(e^{-x} x^n\right) =\frac{1}{n!} \left( \frac{d}{dx} -1 \right)^n x^n,

reducing to the closed form of a following section.

They are orthogonal polynomials with respect to an inner product

\langle f,g \rangle = \int_0^\infty f(x) g(x) e^{-x}\,dx.

The rook polynomials in combinatorics are more or less the same as Laguerre polynomials, up to elementary changes of variables. Further see the Tricomi–Carlitz polynomials.

The Laguerre polynomials arise in quantum mechanics, in the radial part of the solution of the Schrödinger equation for a one-electron atom. They also describe the static Wigner functions of oscillator systems in quantum mechanics in phase space. They further enter in the quantum mechanics of the Morse potential and of the 3D isotropic harmonic oscillator.

Physicists sometimes use a definition for the Laguerre polynomials that is larger by a factor of n! than the definition used here. (Likewise, some physicists may use somewhat different definitions of the so-called associated Laguerre polynomials.)

Recursive definition, closed form, and generating function

One can also define the Laguerre polynomials recursively, defining the first two polynomials as

L_0(x) = 1

L_1(x) = 1 - x

and then using the following recurrence relation for any {{math|k ≥ 1}}:

L_{k + 1}(x) = \frac{(2k + 1 - x)L_k(x) - k L_{k - 1}(x)}{k + 1}.

Furthermore,

x L'_n(x) = nL_n (x) - nL_{n-1}(x).

In solution of some boundary value problems, the characteristic values can be useful:

L_{k}(0) = 1, L_{k}'(0) = -k.

The closed form is

L_n(x)=\sum_{k=0}^n \binom{n}{k}\frac{(-1)^k}{k!} x^k .

The generating function for them likewise follows,

\sum_{n=0}^\infty t^n L_n(x)= \frac{1}{1-t} e^{-tx/(1-t)}.The operator form is

L_n(x) = \frac{1}{n!}e^x \frac{d^n}{dx^n} (x^n e^{-x})

Polynomials of negative index can be expressed using the ones with positive index:

L_{-n}(x)=e^xL_{n-1}(-x).

class="wikitable" style="margin:0.5em auto"

|+A table of the Laguerre polynomials

width="20%" | n

! L_n(x)\,

align="center" | 01\,
align="center" | 1-x+1\,
align="center" | 2

| \tfrac{1}{2} (x^2-4x+2) \,

align="center" | 3

| \tfrac{1}{6} (-x^3+9x^2-18x+6) \,

align="center" | 4

| \tfrac{1}{24} (x^4-16x^3+72x^2-96x+24) \,

align="center" | 5

| \tfrac{1}{120} (-x^5+25x^4-200x^3+600x^2-600x+120) \,

align="center" | 6

| \tfrac{1}{720} (x^6-36x^5+450x^4-2400x^3+5400x^2-4320x+720) \,

align="center" | 7

| \tfrac{1}{5040} (-x^7+49x^6-882x^5+7350x^4-29400x^3+52920x^2-35280x+5040) \,

align="center" | 8

| \tfrac{1}{40320} (x^8-64x^7+1568x^6-18816x^5+117600x^4-376320x^3+564480x^2-322560x+40320) \,

align="center" | 9

| \tfrac{1}{362880} (-x^9+81x^8-2592x^7+42336x^6-381024x^5+1905120x^4-5080320x^3+6531840x^2-3265920x+362880) \,

align="center" | 10

| \tfrac{1}{3628800} (x^{10}-100x^9+4050x^8-86400x^7+1058400x^6-7620480x^5+31752000x^4-72576000x^3+81648000x^2-36288000x+3628800) \,

align="center" | n

| \tfrac{1}{n!} ((-x)^n + n^2(-x)^{n-1} + \dots + n({n!})(-x) + n!) \,

Image:Laguerre poly.svg

Generalized Laguerre polynomials

For arbitrary real α the polynomial solutions of the differential equationA&S p. 781

x\,y'' + \left(\alpha +1 - x\right) y' + n\,y = 0

are called generalized Laguerre polynomials, or associated Laguerre polynomials.

One can also define the generalized Laguerre polynomials recursively, defining the first two polynomials as

L^{(\alpha)}_0(x) = 1

L^{(\alpha)}_1(x) = 1 + \alpha - x

and then using the following recurrence relation for any {{math|k ≥ 1}}:

L^{(\alpha)}_{k + 1}(x) = \frac{(2k + 1 + \alpha - x)L^{(\alpha)}_k(x) - (k + \alpha) L^{(\alpha)}_{k - 1}(x)}{k + 1}.

The simple Laguerre polynomials are the special case {{math|1=α = 0}} of the generalized Laguerre polynomials:

L^{(0)}_n(x) = L_n(x).

The Rodrigues formula for them is

L_n^{(\alpha)}(x) = {x^{-\alpha} e^x \over n!}{d^n \over dx^n} \left(e^{-x} x^{n+\alpha}\right)

= \frac{x^{-\alpha}}{n!}\left( \frac{d}{dx}-1\right)^nx^{n+\alpha}.

The generating function for them is

\sum_{n=0}^\infty t^n L^{(\alpha)}_n(x)= \frac{1}{(1-t)^{\alpha+1}} e^{-tx/(1-t)}.

File:Zugeordnete Laguerre-Polynome.svg

= Properties =

  • Laguerre functions are defined by confluent hypergeometric functions and Kummer's transformation asA&S p. 509 L_n^{(\alpha)}(x) := {n+ \alpha \choose n} M(-n,\alpha+1,x). where {n+ \alpha \choose n} is a generalized binomial coefficient. When {{mvar|n}} is an integer the function reduces to a polynomial of degree {{mvar|n}}. It has the alternative expressionA&S p. 510 L_n^{(\alpha)}(x)= \frac {(-1)^n}{n!} U(-n,\alpha+1,x) in terms of Kummer's function of the second kind.
  • The closed form for these generalized Laguerre polynomials of degree {{mvar|n}} isA&S p. 775 L_n^{(\alpha)} (x) = \sum_{i=0}^n (-1)^i {n+\alpha \choose n-i} \frac{x^i}{i!} derived by applying Leibniz's theorem for differentiation of a product to Rodrigues' formula.
  • Laguerre polynomials have a differential operator representation, much like the closely related Hermite polynomials. Namely, let D = \frac{d}{dx} and consider the differential operator M=xD^2+(\alpha+1)D. Then \exp(-tM)x^n=(-1)^nt^nn!L^{(\alpha)}_n\left(\frac{x}{t}\right).{{citation needed|date=April 2023}}
  • The first few generalized Laguerre polynomials are:

class="wikitable" style="margin:0.5em auto"
width="20%"| n

! L_n^{(\alpha)}(x)\,

align="center" | 0

| 1\,

align="center" | 1

| -x+\alpha +1\,

align="center" | 2

| \tfrac{1}{2} (x^2-2\left( \alpha +2 \right) x+\left( \alpha +1 \right) \left( \alpha +2 \right)) \,

align="center" | 3

| \tfrac{1}{6} (-x^3+3\left( \alpha +3 \right) x^2-3\left( \alpha +2 \right) \left( \alpha +3 \right) x+\left( \alpha +1 \right) \left( \alpha +2 \right) \left( \alpha +3 \right)) \,

align="center" | 4

| \tfrac{1}{24} (x^4-4\left( \alpha +4 \right) x^3+6\left( \alpha +3 \right) \left( \alpha +4 \right) x^2-4\left( \alpha +2 \right) \cdots \left( \alpha +4 \right) x+\left( \alpha +1 \right) \cdots \left( \alpha +4 \right)) \,

align="center" | 5

| \tfrac{1}{120} (-x^5+5\left( \alpha +5 \right) x^4-10\left( \alpha +4 \right) \left( \alpha +5 \right) x^3+10\left( \alpha +3 \right) \cdots \left( \alpha +5 \right) x^2-5\left( \alpha +2 \right) \cdots \left( \alpha +5 \right) x+\left( \alpha +1 \right) \cdots \left( \alpha +5 \right)) \,

align="center" | 6

| \tfrac{1}{720} (x^6-6\left( \alpha +6 \right) x^5+15\left( \alpha +5 \right) \left( \alpha +6 \right) x^4-20\left( \alpha +4 \right) \cdots \left( \alpha +6 \right) x^3+15\left( \alpha +3 \right) \cdots \left( \alpha +6 \right) x^2-6\left( \alpha +2 \right) \cdots \left( \alpha +6 \right) x+\left( \alpha +1 \right) \cdots \left( \alpha +6 \right)) \,

align="center" | 7

| \tfrac{1}{5040} (-x^7+7\left( \alpha +7 \right) x^6-21\left( \alpha +6 \right) \left( \alpha +7 \right) x^5+35\left( \alpha +5 \right) \cdots \left( \alpha +7 \right) x^4-35\left( \alpha +4 \right) \cdots \left( \alpha +7 \right) x^3+21\left( \alpha +3 \right) \cdots \left( \alpha +7 \right) x^2-7\left( \alpha +2 \right) \cdots \left( \alpha +7 \right) x+\left( \alpha +1 \right) \cdots \left( \alpha +7 \right)) \,

align="center" | 8

| \tfrac{1}{40320} (x^8-8\left( \alpha +8 \right) x^7+28\left( \alpha +7 \right) \left( \alpha +8 \right) x^6-56\left( \alpha +6 \right) \cdots \left( \alpha +8 \right) x^5+70\left( \alpha +5 \right) \cdots \left( \alpha +8 \right) x^4-56\left( \alpha +4 \right) \cdots \left( \alpha +8 \right) x^3+28\left( \alpha +3 \right) \cdots \left( \alpha +8 \right) x^2-8\left( \alpha +2 \right) \cdots \left( \alpha +8 \right) x+\left( \alpha +1 \right) \cdots \left( \alpha +8 \right)) \,

align="center" | 9

| \tfrac{1}{362880} (-x^9+9\left( \alpha +9 \right) x^8-36\left( \alpha +8 \right) \left( \alpha +9 \right) x^7+84\left( \alpha +7 \right) \cdots \left( \alpha +9 \right) x^6-126\left( \alpha +6 \right) \cdots \left( \alpha +9 \right) x^5+126\left( \alpha +5 \right) \cdots \left( \alpha +9 \right) x^4-84\left( \alpha +4 \right) \cdots \left( \alpha +9 \right) x^3+36\left( \alpha +3 \right) \cdots \left( \alpha +9 \right) x^2-9\left( \alpha +2 \right) \cdots \left( \alpha +9 \right) x+\left( \alpha +1 \right) \cdots \left( \alpha +9 \right)) \,

align="center" | 10

| \tfrac{1}{3628800} (x^{10}-10\left( \alpha +10 \right) x^9+45\left( \alpha +9 \right) \left( \alpha +10 \right) x^8-120\left( \alpha +8 \right) \cdots \left( \alpha +10 \right) x^7+210\left( \alpha +7 \right) \cdots \left( \alpha +10 \right) x^6-252\left( \alpha +6 \right) \cdots \left( \alpha +10 \right) x^5+210\left( \alpha +5 \right) \cdots \left( \alpha +10 \right) x^4-120\left( \alpha +4 \right) \cdots \left( \alpha +10 \right) x^3+45\left( \alpha +3 \right) \cdots \left( \alpha +10 \right) x^2-10\left( \alpha +2 \right) \cdots \left( \alpha +10 \right) x+\left( \alpha +1 \right) \cdots \left( \alpha +10 \right)) \,

  • The coefficient of the leading term is {{math|(−1)n/n!}};
  • The constant term, which is the value at 0, is L_n^{(\alpha)}(0) = {n+\alpha\choose n} = \frac{\Gamma(n + \alpha + 1)}{n!\, \Gamma(\alpha + 1)};

  • If {{math|α}} is non-negative, then Ln(α) has n real, strictly positive roots (notice that \left((-1)^{n-i} L_{n-i}^{(\alpha)}\right)_{i=0}^n is a Sturm chain), which are all in the interval \left( 0, n+\alpha+ (n-1) \sqrt{n+\alpha} \, \right].{{citation needed|date=September 2011}}
  • The polynomials' asymptotic behaviour for large {{mvar|n}}, but fixed {{mvar|α}} and {{math|x > 0}}, is given bySzegő, p. 198.D. Borwein, J. M. Borwein, R. E. Crandall, "Effective Laguerre asymptotics", SIAM J. Numer. Anal., vol. 46 (2008), no. 6, pp. 3285–3312 {{doi|10.1137/07068031X}}

\begin{align}

& L_n^{(\alpha)}(x) = \frac{n^{\frac{\alpha}{2}-\frac{1}{4}}}{\sqrt{\pi}} \frac{e^{\frac{x}{2}}}{x^{\frac{\alpha}{2}+\frac{1}{4}}} \sin\left(2 \sqrt{nx}- \frac{\pi}{2}\left(\alpha-\frac{1}{2} \right) \right)+O\left(n^{\frac{\alpha}{2}-\frac{3}{4}}\right), \\[6pt]

& L_n^{(\alpha)}(-x) = \frac{(n+1)^{\frac{\alpha}{2}-\frac{1}{4}}}{2\sqrt{\pi}} \frac{e^{-x/2}}{x^{\frac{\alpha}{2}+\frac{1}{4}}} e^{2 \sqrt{x(n+1)}} \cdot\left(1+O\left(\frac{1}{\sqrt{n+1}}\right)\right),

\end{align}

and summarizing by \frac{L_n^{(\alpha)}\left(\frac x n\right)}{n^\alpha}\approx e^{x/ 2n} \cdot \frac{J_\alpha\left(2\sqrt x\right)}{\sqrt x^\alpha}, where J_\alpha is the Bessel function.

= As a contour integral =

Given the generating function specified above, the polynomials may be expressed in terms of a contour integral

L_n^{(\alpha)}(x)=\frac{1}{2\pi i}\oint_C\frac{e^{-xt/(1-t)}}{(1-t)^{\alpha+1}\,t^{n+1}} \; dt,

where the contour circles the origin once in a counterclockwise direction without enclosing the essential singularity at 1

= Recurrence relations =

The addition formula for Laguerre polynomials:{{Cite web |title=DLMF: §18.18 Sums ‣ Classical Orthogonal Polynomials ‣ Chapter 18 Orthogonal Polynomials |url=https://dlmf.nist.gov/18.18 |access-date=2025-03-18 |website=dlmf.nist.gov}}

L^{(\alpha_{1}+\dots+\alpha_{r}+r-1)}_{n}\left(x_{1}+\dots+x_{r}\right)=\sum_{m_{1}+\dots+m_{r}=n}L^{(\alpha_{1})}_{m_{1}}\left(x_{1}\right)\cdots L^{(\alpha_{r})}_{m_{r}}\left(x_{r}\right).Laguerre's polynomials satisfy the recurrence relations

L_n^{(\alpha)}(x)= \sum_{i=0}^n L_{n-i}^{(\alpha+i)}(y)\frac{(y-x)^i}{i!},

in particular

L_n^{(\alpha+1)}(x)= \sum_{i=0}^n L_i^{(\alpha)}(x)

and

L_n^{(\alpha)}(x)= \sum_{i=0}^n {\alpha-\beta+n-i-1 \choose n-i} L_i^{(\beta)}(x),

or

L_n^{(\alpha)}(x)=\sum_{i=0}^n {\alpha-\beta+n \choose n-i} L_i^{(\beta- i)}(x);

moreover

\begin{align}

L_n^{(\alpha)}(x)- \sum_{j=0}^{\Delta-1} {n+\alpha \choose n-j} (-1)^j \frac{x^j}{j!}&= (-1)^\Delta\frac{x^\Delta}{(\Delta-1)!} \sum_{i=0}^{n-\Delta} \frac{{n+\alpha \choose n-\Delta-i}}{(n-i){n \choose i}}L_i^{(\alpha+\Delta)}(x)\\[6pt]

&=(-1)^\Delta\frac{x^\Delta}{(\Delta-1)!} \sum_{i=0}^{n-\Delta} \frac{{n+\alpha-i-1 \choose n-\Delta-i}}{(n-i){n \choose i}}L_i^{(n+\alpha+\Delta-i)}(x)

\end{align}

They can be used to derive the four 3-point-rules

\begin{align}

L_n^{(\alpha)}(x) &= L_n^{(\alpha+1)}(x) - L_{n-1}^{(\alpha+1)}(x) = \sum_{j=0}^k {k \choose j}(-1)^j L_{n-j}^{(\alpha+k)}(x), \\[10pt]

n L_n^{(\alpha)}(x) &= (n + \alpha )L_{n-1}^{(\alpha)}(x) - x L_{n-1}^{(\alpha+1)}(x), \\[10pt]

& \text{or } \\

\frac{x^k}{k!}L_n^{(\alpha)}(x) &= \sum_{i=0}^k (-1)^i {n+i \choose i} {n+\alpha \choose k-i} L_{n+i}^{(\alpha-k)}(x), \\[10pt]

n L_n^{(\alpha+1)}(x) &= (n-x) L_{n-1}^{(\alpha+1)}(x) + (n+\alpha)L_{n-1}^{(\alpha)}(x) \\[10pt]

x L_n^{(\alpha+1)}(x) &= (n+\alpha)L_{n-1}^{(\alpha)}(x)-(n-x)L_n^{(\alpha)}(x);

\end{align}

combined they give this additional, useful recurrence relations\begin{align}

L_n^{(\alpha)}(x)&= \left(2+\frac{\alpha-1-x}n \right)L_{n-1}^{(\alpha)}(x)- \left(1+\frac{\alpha-1}n \right)L_{n-2}^{(\alpha)}(x)\\[10pt]

&= \frac{\alpha+1-x}n L_{n-1}^{(\alpha+1)}(x)- \frac x n L_{n-2}^{(\alpha+2)}(x)

\end{align}

Since L_n^{(\alpha)}(x) is a monic polynomial of degree n in \alpha,

there is the partial fraction decomposition

\begin{align}

\frac{n!\,L_n^{(\alpha)}(x)}{(\alpha+1)_n}

&= 1- \sum_{j=1}^n (-1)^j \frac{j}{\alpha + j} {n \choose j}L_n^{(-j)}(x) \\

&= 1- \sum_{j=1}^n \frac{x^j}{\alpha + j}\,\,\frac{L_{n-j}^{(j)}(x)}{(j-1)!} \\

&= 1-x \sum_{i=1}^n \frac{L_{n-i}^{(-\alpha)}(x) L_{i-1}^{(\alpha+1)}(-x)}{\alpha +i}.

\end{align}

The second equality follows by the following identity, valid for integer i and {{mvar|n}} and immediate from the expression of L_n^{(\alpha)}(x) in terms of Charlier polynomials:

\frac{(-x)^i}{i!} L_n^{(i-n)}(x) = \frac{(-x)^n}{n!} L_i^{(n-i)}(x).

For the third equality apply the fourth and fifth identities of this section.

= Derivatives =

Differentiating the power series representation of a generalized Laguerre polynomial {{mvar|k}} times leads to

\frac{d^k}{d x^k} L_n^{(\alpha)} (x) = \begin{cases}

(-1)^k L_{n-k}^{(\alpha+k)}(x) & \text{if } k\le n, \\

0 & \text{otherwise.}

\end{cases}

This points to a special case ({{math|1=α = 0}}) of the formula above: for integer {{math|1=α = k}} the generalized polynomial may be written

L_n^{(k)}(x)=(-1)^k\frac{d^kL_{n+k}(x)}{dx^k},

the shift by {{mvar|k}} sometimes causing confusion with the usual parenthesis notation for a derivative.

Moreover, the following equation holds:

\frac{1}{k!} \frac{d^k}{d x^k} x^\alpha L_n^{(\alpha)} (x) = {n+\alpha \choose k} x^{\alpha-k} L_n^{(\alpha-k)}(x),

which generalizes with Cauchy's formula to

L_n^{(\alpha')}(x) = (\alpha'-\alpha) {\alpha'+ n \choose \alpha'-\alpha} \int_0^x \frac{t^\alpha (x-t)^{\alpha'-\alpha-1}}{x^{\alpha'}} L_n^{(\alpha)}(t)\,dt.

The derivative with respect to the second variable {{mvar|α}} has the form,{{Cite journal | doi=10.1080/10652469708819127 | title = Identities for families of orthogonal polynomials and special functions| journal=Integral Transforms and Special Functions | volume=5| issue=1–2| pages=69–102|year = 1997|last1 = Koepf|first1 = Wolfram| citeseerx=10.1.1.298.7657}}

\frac{d}{d \alpha}L_n^{(\alpha)}(x)= \sum_{i=0}^{n-1} \frac{L_i^{(\alpha)}(x)}{n-i}.

The generalized Laguerre polynomials obey the differential equation

x L_n^{(\alpha) \prime\prime}(x) + (\alpha+1-x)L_n^{(\alpha)\prime}(x) + n L_n^{(\alpha)}(x)=0,

which may be compared with the equation obeyed by the kth derivative of the ordinary Laguerre polynomial,

x L_n^{[k] \prime\prime}(x) + (k+1-x)L_n^{[k]\prime}(x) + (n-k) L_n^{[k]}(x)=0,

where L_n^{[k]}(x)\equiv\frac{d^kL_n(x)}{dx^k} for this equation only.

In Sturm–Liouville form the differential equation is

-\left(x^{\alpha+1} e^{-x}\cdot L_n^{(\alpha)}(x)^\prime\right)' = n\cdot x^\alpha e^{-x}\cdot L_n^{(\alpha)}(x),

which shows that {{math|L{{su|b=n|p=(α)}}}} is an eigenvector for the eigenvalue {{mvar|n}}.

= Orthogonality =

The generalized Laguerre polynomials are orthogonal over {{closed-open|0, ∞}} with respect to the measure with weighting function {{math|xα ex}}:{{Cite web | url=http://mathworld.wolfram.com/AssociatedLaguerrePolynomial.html | title=Associated Laguerre Polynomial}}

\int_0^\infty x^\alpha e^{-x} L_n^{(\alpha)}(x)L_m^{(\alpha)}(x)dx=\frac{\Gamma(n+\alpha+1)}{n!} \delta_{n,m},

which follows from

\int_0^\infty x^{\alpha'-1} e^{-x} L_n^{(\alpha)}(x)dx= {\alpha-\alpha'+n \choose n} \Gamma(\alpha').

If \Gamma(x,\alpha+1,1) denotes the gamma distribution then the orthogonality relation can be written as

\int_0^{\infty} L_n^{(\alpha)}(x)L_m^{(\alpha)}(x)\Gamma(x,\alpha+1,1) dx={n+ \alpha \choose n}\delta_{n,m}.

The associated, symmetric kernel polynomial has the representations (Christoffel–Darboux formula){{citation needed|date=October 2011}}

\begin{align}

K_n^{(\alpha)}(x,y) &:= \frac{1}{\Gamma(\alpha+1)} \sum_{i=0}^n \frac{L_i^{(\alpha)}(x) L_i^{(\alpha)}(y)}{{\alpha+i \choose i}}\\[4pt]

& =\frac{1}{\Gamma(\alpha+1)} \frac{L_n^{(\alpha)}(x) L_{n+1}^{(\alpha)}(y) - L_{n+1}^{(\alpha)}(x) L_n^{(\alpha)}(y)}{\frac{x-y}{n+1} {n+\alpha \choose n}} \\[4pt]

&= \frac{1}{\Gamma(\alpha+1)}\sum_{i=0}^n \frac{x^i}{i!} \frac{L_{n-i}^{(\alpha+i)}(x) L_{n-i}^{(\alpha+i+1)}(y)}{{\alpha+n \choose n}{n \choose i}};

\end{align}

recursively

K_n^{(\alpha)}(x,y)=\frac{y}{\alpha+1} K_{n-1}^{(\alpha+1)}(x,y)+ \frac{1}{\Gamma(\alpha+1)} \frac{L_n^{(\alpha+1)}(x) L_n^{(\alpha)}(y)}{{\alpha+n \choose n}}.

Moreover,{{clarify|post-text=Limit as n goes to infinity?|date=January 2016}}

y^\alpha e^{-y} K_n^{(\alpha)}(\cdot, y) \to \delta(y- \cdot).

Turán's inequalities can be derived here, which is

L_n^{(\alpha)}(x)^2- L_{n-1}^{(\alpha)}(x) L_{n+1}^{(\alpha)}(x)= \sum_{k=0}^{n-1} \frac{{\alpha+n-1\choose n-k}}{n{n\choose k}} L_k^{(\alpha-1)}(x)^2>0.

The following integral is needed in the quantum mechanical treatment of the hydrogen atom,

\int_0^{\infty}x^{\alpha+1} e^{-x} \left[L_n^{(\alpha)} (x)\right]^2 dx= \frac{(n+\alpha)!}{n!}(2n+\alpha+1).

= Series expansions =

Let a function have the (formal) series expansion

f(x)= \sum_{i=0}^\infty f_i^{(\alpha)} L_i^{(\alpha)}(x).

Then

f_i^{(\alpha)}=\int_0^\infty \frac{L_i^{(\alpha)}(x)}{{i+ \alpha \choose i}} \cdot \frac{x^\alpha e^{-x}}{\Gamma(\alpha+1)} \cdot f(x) \,dx .

The series converges in the associated Hilbert space {{math|L2[0, ∞)}} if and only if

\| f \|_{L^2}^2 := \int_0^\infty \frac{x^\alpha e^{-x}}{\Gamma(\alpha+1)} | f(x)|^2 \, dx = \sum_{i=0}^\infty {i+\alpha \choose i} |f_i^{(\alpha)}|^2 < \infty.

== Further examples of expansions==

Monomials are represented as

\frac{x^n}{n!}= \sum_{i=0}^n (-1)^i {n+ \alpha \choose n-i} L_i^{(\alpha)}(x),

while binomials have the parametrization

{n+x \choose n}= \sum_{i=0}^n \frac{\alpha^i}{i!} L_{n-i}^{(x+i)}(\alpha).

This leads directly to

e^{-\gamma x}= \sum_{i=0}^\infty \frac{\gamma^i}{(1+\gamma)^{i+\alpha+1}} L_i^{(\alpha)}(x) \qquad \text{convergent iff } \Re(\gamma) > -\tfrac{1}{2}

for the exponential function. The incomplete gamma function has the representation

\Gamma(\alpha,x)=x^\alpha e^{-x} \sum_{i=0}^\infty \frac{L_i^{(\alpha)}(x)}{1+i} \qquad \left(\Re(\alpha)>-1 , x > 0\right).

In quantum mechanics

In quantum mechanics the Schrödinger equation for the hydrogen-like atom is exactly solvable by separation of variables in spherical coordinates. The radial part of the wave function is a (generalized) Laguerre polynomial.{{Cite book|title=Quantum Mechanics in Chemistry|last=Ratner, Schatz|first=Mark A., George C.|publisher=Prentice Hall|year=2001|location=0-13-895491-7| pages=90–91}}

Vibronic transitions in the Franck-Condon approximation can also be described using Laguerre polynomials.{{Cite journal|last1=Jong|first1=Mathijs de|last2=Seijo|first2=Luis|last3=Meijerink|first3=Andries| last4=Rabouw |first4=Freddy T.| date=2015-06-24|title=Resolving the ambiguity in the relation between Stokes shift and Huang–Rhys parameter |url=https://pubs.rsc.org/en/content/articlelanding/2015/cp/c5cp02093j|journal=Physical Chemistry Chemical Physics|language=en| volume=17 |issue=26|pages=16959–16969|doi=10.1039/C5CP02093J|pmid=26062123|bibcode=2015PCCP...1716959D|hdl=1874/321453|s2cid=34490576 | issn=1463-9084|hdl-access=free}}

Multiplication theorems

Erdélyi gives the following two multiplication theorems C. Truesdell, "[http://www.pnas.org/cgi/reprint/36/12/752.pdf On the Addition and Multiplication Theorems for the Special Functions]", Proceedings of the National Academy of Sciences, Mathematics, (1950) pp. 752–757.

\begin{align}

& t^{n+1+\alpha} e^{(1-t) z} L_n^{(\alpha)}(z t)=\sum_{k=n}^\infty {k \choose n}\left(1-\frac 1 t\right)^{k-n} L_k^{(\alpha)}(z), \\[6pt]

& e^{(1-t)z} L_n^{(\alpha)}(z t)=\sum_{k=0}^\infty \frac{(1-t)^k z^k}{k!}L_n^{(\alpha+k)}(z).

\end{align}

Relation to Hermite polynomials

The generalized Laguerre polynomials are related to the Hermite polynomials:

\begin{align}

H_{2n}(x) &= (-1)^n 2^{2n} n! L_n^{(-1/2)} (x^2) \\[4pt]

H_{2n+1}(x) &= (-1)^n 2^{2n+1} n! x L_n^{(1/2)} (x^2)

\end{align}

where the {{math|Hn(x)}} are the Hermite polynomials based on the weighting function {{math|exp(−x2)}}, the so-called "physicist's version."

Because of this, the generalized Laguerre polynomials arise in the treatment of the quantum harmonic oscillator.

Applying the addition formula,(-1)^n 2^{2n} n! \, L^{\left(\frac{r}{2}-1\right)}_{n}\Bigl(z_1^2+\cdots+z_r^2\Bigr)

=\sum_{m_1+\cdots+m_r=n} \prod_{i=1}^r H_{2m_i}(z_i).

Relation to hypergeometric functions

The Laguerre polynomials may be defined in terms of hypergeometric functions, specifically the confluent hypergeometric functions, as

L^{(\alpha)}_n(x) = {n+\alpha \choose n} M(-n,\alpha+1,x) =\frac{(\alpha+1)_n} {n!} \,_1F_1(-n,\alpha+1,x)

where (a)_n is the Pochhammer symbol (which in this case represents the rising factorial).

Hardy–Hille formula

The generalized Laguerre polynomials satisfy the Hardy–Hille formulaSzegő, p. 102.W. A. Al-Salam (1964), [https://projecteuclid.org/euclid.dmj/1077375084 "Operational representations for Laguerre and other polynomials"], Duke Math J. 31 (1): 127–142.

\sum_{n=0}^\infty \frac{n!\,\Gamma\left(\alpha + 1\right)}{\Gamma\left(n+\alpha+1\right)}L_n^{(\alpha)}(x)L_n^{(\alpha)}(y)t^n=\frac{1}{(1-t)^{\alpha + 1}}e^{-(x+y)t/(1-t)}\,_0F_1\left(;\alpha + 1;\frac{xyt}{(1-t)^2}\right),

where the series on the left converges for \alpha>-1 and |t|<1. Using the identity

\,_0F_1(;\alpha + 1;z)=\,\Gamma(\alpha + 1) z^{-\alpha/2} I_\alpha\left(2\sqrt{z}\right),

(see generalized hypergeometric function), this can also be written as

\sum_{n=0}^\infty \frac{n!}{\Gamma(1+\alpha+n)}L_n^{(\alpha)}(x)L_n^{(\alpha)}(y) t^n = \frac{1}{(xyt)^{\alpha/2}(1-t)}e^{-(x+y)t/(1-t)} I_\alpha \left(\frac{2\sqrt{xyt}}{1-t}\right).where I_\alpha denotes the modified Bessel function of the first kind, defined as

I_\alpha(z) = \sum_{k=0}^\infty \frac{1}{k!\, \Gamma(k+\alpha+1)} \left(\frac{z}{2}\right)^{2k+\alpha}

This formula is a generalization of the Mehler kernel for Hermite polynomials, which can be recovered from it by setting the Hermite polynomials as a special case of the associated Laguerre polynomials.

Substitute t \mapsto -t/y and take the y \to \infty limit, we obtain Szegő, page 102, Equation (5.1.16)

\sum_{n=0}^\infty

\frac{t^n}{\Gamma(n+1+\alpha)} L_n^{(\alpha)}(x)

=

\frac{e^t}{(-xt)^{\alpha/2}}I_{\alpha}(2\sqrt{-xt}).

Physics convention

The generalized Laguerre polynomials are used to describe the quantum wavefunction for hydrogen atom orbitals.{{cite book |last1=Griffiths |first1=David J. |title=Introduction to quantum mechanics |date=2005 |publisher=Pearson Prentice Hall |location=Upper Saddle River, NJ |isbn=0131118927 |edition=2nd}}{{cite book |last1=Sakurai |first1=J. J. |title=Modern quantum mechanics |date=2011 |publisher=Addison-Wesley |location=Boston |isbn=978-0805382914 |edition=2nd}}{{cite book |last1=Merzbacher |first1=Eugen |title=Quantum mechanics |date=1998 |publisher=Wiley |location=New York |isbn=0471887021 |edition=3rd}} The convention used throughout this article expresses the generalized Laguerre polynomials as {{cite book |last1=Abramowitz |first1=Milton |title=Handbook of mathematical functions, with formulas, graphs, and mathematical tables |date=1965 |publisher=Dover Publications |location=New York |isbn=978-0-486-61272-0}}

L_n^{(\alpha)}(x) = \frac{\Gamma(\alpha + n + 1)}{\Gamma(\alpha + 1) n!} \,_1F_1(-n; \alpha + 1; x),

where \,_1F_1(a;b;x) is the confluent hypergeometric function.

In the physics literature, the generalized Laguerre polynomials are instead defined as

\bar{L}_n^{(\alpha)}(x) = \frac{\left[\Gamma(\alpha + n + 1)\right]^2}{\Gamma(\alpha + 1)n!} \,_1F_1(-n; \alpha + 1; x).

The physics version is related to the standard version by

\bar{L}_n^{(\alpha)}(x) = (n+\alpha)! L_n^{(\alpha)}(x).

There is yet another, albeit less frequently used, convention in the physics literature {{cite book |last1=Schiff |first1=Leonard I. |title=Quantum mechanics |date=1968 |publisher=McGraw-Hill |location=New York |isbn=0070856435 |edition=3d}}{{cite book |last1=Messiah |first1=Albert |title=Quantum Mechanics. |date=2014 |publisher=Dover Publications |isbn=9780486784557}}{{cite book |last1=Boas |first1=Mary L. |title=Mathematical methods in the physical sciences |date=2006 |publisher=Wiley |location=Hoboken, NJ |isbn=9780471198260 |edition=3rd}}

\tilde{L}_n^{(\alpha)}(x) = (-1)^{\alpha}\bar{L}_{n-\alpha}^{(\alpha)}.

Umbral calculus convention

Generalized Laguerre polynomials are linked to Umbral calculus by being Sheffer sequences for D/(D-I) when multiplied by n!. In Umbral Calculus convention,{{Cite journal |last1=Rota |first1=Gian-Carlo |last2=Kahaner |first2=D |last3=Odlyzko |first3=A |date=1973-06-01 |title=On the foundations of combinatorial theory. VIII. Finite operator calculus |journal=Journal of Mathematical Analysis and Applications |language=en |volume=42 |issue=3 |pages=684–760 |doi=10.1016/0022-247X(73)90172-8 |issn=0022-247X|doi-access=free }} the default Laguerre polynomials are defined to be\mathcal L_n(x) = n!L_n^{(-1)}(x) = \sum_{k=0}^n L(n,k) (-x)^kwhere L(n,k) = \binom{n-1}{k-1} \frac{n!}{k!} are the signless Lah numbers. (\mathcal L_n(x))_{n\in\N} is a sequence of polynomials of binomial type, ie they satisfy\mathcal L_n(x+y) = \sum_{k=0}^n \binom{n}{k} \mathcal L_k(x) \mathcal L_{n-k}(y)

See also

Notes

{{Reflist|35em}}

References

  • {{Abramowitz_Stegun_ref|22|773}}
  • G. Szegő, Orthogonal polynomials, 4th edition, Amer. Math. Soc. Colloq. Publ., vol. 23, Amer. Math. Soc., Providence, RI, 1975.
  • {{dlmf|id=18|title=Orthogonal Polynomials|first=Tom H.|last=Koornwinder|first2=Roderick S. C.|last2= Wong|first3=Roelof | last3=Koekoek ||first4=René F. |last4=Swarttouw}}
  • B. Spain, M.G. Smith, Functions of mathematical physics, Van Nostrand Reinhold Company, London, 1970. Chapter 10 deals with Laguerre polynomials.
  • {{springer|title=Laguerre polynomials|id=p/l057310}}
  • Eric W. Weisstein, "[http://mathworld.wolfram.com/LaguerrePolynomial.html Laguerre Polynomial]", From MathWorld—A Wolfram Web Resource.
  • {{cite book|author=George Arfken and Hans Weber| title= Mathematical Methods for Physicists| publisher=Academic Press| year=2000| isbn = 978-0-12-059825-0 }}