Circle packing in an equilateral triangle

{{short description|Two-dimensional packing problem}}

{{unsolved|mathematics|What is the smallest possible equilateral triangle which an amount {{mvar|n}} of unit circles can be packed into?}}

Circle packing in an equilateral triangle is a packing problem in discrete mathematics where the objective is to pack {{mvar|n}} unit circles into the smallest possible equilateral triangle. Optimal solutions are known for {{math|n < 13}} and for any triangular number of circles, and conjectures are available for {{math|n < 28}}.{{citation

| last = Melissen | first = Hans

| doi = 10.2307/2324212

| mr = 1252928

| issue = 10

| journal = The American Mathematical Monthly

| pages = 916–925

| title = Densest packings of congruent circles in an equilateral triangle

| volume = 100

| year = 1993| jstor = 2324212

}}.{{citation

| last1 = Melissen | first1 = J. B. M.

| last2 = Schuur | first2 = P. C.

| doi = 10.1016/0012-365X(95)90139-C

| mr = 1356610

| issue = 1–3

| journal = Discrete Mathematics

| pages = 333–342

| title = Packing 16, 17 or 18 circles in an equilateral triangle

| volume = 145

| year = 1995| url = https://research.utwente.nl/en/publications/packing-16-17-of-18-circles-in-an-equilateral-triangle(b2172f19-9654-4ff1-9af4-59da1b6bef3d).html

| doi-access = free

}}.{{citation

| last1 = Graham | first1 = R. L. | author1-link = Ronald Graham

| last2 = Lubachevsky | first2 = B. D.

| mr = 1309122

| journal = Electronic Journal of Combinatorics

| page = Article 1, approx. 39 pp. (electronic)

| title = Dense packings of equal disks in an equilateral triangle: from 22 to 34 and beyond

| url = http://www.combinatorics.org/Volume_2/Abstracts/v2i1a1.html

| volume = 2

| year = 1995}}.

A conjecture of Paul Erdős and Norman Oler states that, if {{mvar|n}} is a triangular number, then the optimal packings of {{math|n − 1}} and of {{mvar|n}} circles have the same side length: that is, according to the conjecture, an optimal packing for {{math|n − 1}} circles can be found by removing any single circle from the optimal hexagonal packing of {{mvar|n}} circles.{{citation

| last = Oler | first = Norman

| doi = 10.4153/CMB-1961-018-7

| mr = 0133065

| journal = Canadian Mathematical Bulletin

| pages = 153–155

| title = A finite packing problem

| volume = 4

| year = 1961| issue = 2

| doi-access = free

}}. This conjecture is now known to be true for {{math|n ≤ 15}}.{{citation

| last = Payan | first = Charles

| doi = 10.1016/S0012-365X(96)00201-4

| mr = 1439300

| journal = Discrete Mathematics

| language = French

| pages = 555–565

| title = Empilement de cercles égaux dans un triangle équilatéral. À propos d'une conjecture d'Erdős-Oler

| volume = 165/166

| year = 1997| doi-access = free

}}.

Minimum solutions for the side length of the triangle:

{{Table alignment}}

class="wikitable defaultright col2center"
Number
of circles

! Triangle
number

! Length

! Area

! Figure

1

| Yes

| 2 \sqrt {3} = 3.464...

|align="right"| 5.196...

|File:CircleInEquilateralTrianglePacking(1).png

2

|

| 2 + 2 \sqrt {3} = 5.464...

| 12.928...

|File:Circle_packing_in_equilateral_triangle_for_2_circles.png

3

| Yes

| 2 + 2 \sqrt {3} = 5.464...

| 12.928...

|File:Circle_packing_in_equilateral_triangle_for_3_circles.png

4

|

| 4 \sqrt {3} = 6.928...

| 20.784...

| File:Circle_packing_in_equilateral_triangle_for_4_circles.png

5

|

| 4 + 2 \sqrt {3} = 7.464...

| 24.124...

| File:Circle_packing_in_equilateral_triangle_for_5_circles.png

6

| Yes

| 4 + 2 \sqrt {3} = 7.464...

|24.124...

|File:Circle_packing_in_equilateral_triangle_for_6.png

7

|

| 2 + 4 \sqrt {3} = 8.928...

|34.516...

|File:Circle_packing_in_equilateral_triangle_for_7_circles.png

8

|

| 2 + 2 \sqrt{3} + \tfrac {2} {3} \sqrt{33} = 9.293...

|37.401...

|File:Circle packing in equilateral triangle for 8 circles.png

9

|

| 6 + 2 \sqrt {3} = 9.464...

|38.784...

|File:Circle_packing_in_equilateral_triangle_for_9_circles.png

10

| Yes

| 6 + 2 \sqrt {3} = 9.464...

|38.784...

|File:Circle_packing_in_equilateral_triangle_for_10_circles.png

11

|

| 4 + 2 \sqrt {3} + \tfrac {4} {3} \sqrt{6} = 10.730...

|49.854...

|File:Ircle_packing_in_equilateral_triangle_for_11_circles.png

12

|

| 4 + 4 \sqrt {3} = 10.928...

|51.712...

|File:Circle_packing_in_equilateral_triangle_for_12_circles.png

13

|

| 4 + \tfrac {10} {3} \sqrt{3} + \tfrac {2} {3} \sqrt{6} = 11.406...

|56.338...

|220x220px

14

|

| 8 + 2 \sqrt {3} = 11.464...

|56.908...

|220x220px

15

| Yes

| 8 + 2 \sqrt {3} = 11.464...

|56.908...

|220x220px

A closely related problem is to cover the equilateral triangle with a fixed number of equal circles, having as small a radius as possible.{{citation

| last = Nurmela | first = Kari J.

| mr = 1780209

| issue = 2

| journal = Experimental Mathematics

| pages = 241–250

| title = Conjecturally optimal coverings of an equilateral triangle with up to 36 equal circles

| url = http://projecteuclid.org/getRecord?id=euclid.em/1045952348

| volume = 9

| year = 2000

| doi=10.1080/10586458.2000.10504649| s2cid = 45127090

}}.

See also

References

{{Packing problem}}

Category:Circle packing

{{elementary-geometry-stub}}