Classifying space for SU(n)#Infinite classifying space

In mathematics, the classifying space \operatorname{BSU}(n) for the special unitary group \operatorname{SU}(n) is the base space of the universal \operatorname{SU}(n) principal bundle \operatorname{ESU}(n)\rightarrow\operatorname{BSU}(n). This means that \operatorname{SU}(n) principal bundles over a CW complex up to isomorphism are in bijection with homotopy classes of its continuous maps into \operatorname{BSU}(n). The isomorphism is given by pullback.

Definition

There is a canonical inclusion of complex oriented Grassmannians given by \widetilde\operatorname{Gr}_n(\mathbb{C}^k)\hookrightarrow\widetilde\operatorname{Gr}_n(\mathbb{C}^{k+1}),

V\mapsto V\times\{0\}. Its colimit is:

\operatorname{BSU}(n)

:=\widetilde\operatorname{Gr}_n(\mathbb{C}^\infty)

:=\lim_{n\rightarrow\infty}\widetilde\operatorname{Gr}_n(\mathbb{C}^k).

Since real oriented Grassmannians can be expressed as a homogeneous space by:

: \widetilde\operatorname{Gr}_n(\mathbb{C}^k)

=\operatorname{SU}(n+k)/(\operatorname{SU}(n)\times\operatorname{SU}(k))

the group structure carries over to \operatorname{BSU}(n).

Simplest classifying spaces

  • Since \operatorname{SU}(1)

\cong 1 is the trivial group, \operatorname{BSU}(1)

\cong\{*\} is the trivial topological space.

  • Since \operatorname{SU}(2)

\cong\operatorname{Sp}(1), one has \operatorname{BSU}(2)

\cong\operatorname{BSp}(1)

\cong\mathbb{H}P^\infty.

Classification of principal bundles

Given a topological space X the set of \operatorname{SU}(n) principal bundles on it up to isomorphism is denoted \operatorname{Prin}_{\operatorname{SU}(n)}(X). If X is a CW complex, then the map:{{cite web |access-date=2024-03-14 |language=en |title=universal principal bundle |url=https://ncatlab.org/nlab/show/universal+principal+bundle |website=nLab}}

: [X,\operatorname{BSU}(n)]\rightarrow\operatorname{Prin}_{\operatorname{SU}(n)}(X),

[f]\mapsto f^*\operatorname{ESU}(n)

is bijective.

Cohomology ring

The cohomology ring of \operatorname{BSU}(n) with coefficients in the ring \mathbb{Z} of integers is generated by the Chern classes:Hatcher 02, Example 4D.7.

: H^*(\operatorname{BSU}(n);\mathbb{Z})

=\mathbb{Z}[c_2,\ldots,c_n].

Infinite classifying space

The canonical inclusions \operatorname{SU}(n)\hookrightarrow\operatorname{SU}(n+1) induce canonical inclusions \operatorname{BSU}(n)\hookrightarrow\operatorname{BSU}(n+1) on their respective classifying spaces. Their respective colimits are denoted as:

: \operatorname{SU}

:=\lim_{n\rightarrow\infty}\operatorname{SU}(n);

: \operatorname{BSU}

:=\lim_{n\rightarrow\infty}\operatorname{BSU}(n).

\operatorname{BSU} is indeed the classifying space of \operatorname{SU}.

See also

Literature

  • {{cite book|last=Hatcher|first=Allen|title=Algebraic topology|publisher=Cambridge University Press|location=Cambridge|year=2002|isbn=0-521-79160-X|url=https://pi.math.cornell.edu/~hatcher/AT/ATpage.html}}
  • {{cite book|title=Universal principal bundles and classifying spaces|publisher=|location=|year=August 2001|isbn=|url=https://math.mit.edu/~mbehrens/18.906/prin.pdf|last=Mitchell|first=Stephen|doi=}}

References