Continuous Hahn polynomials
In mathematics, the continuous Hahn polynomials are a family of orthogonal polynomials in the Askey scheme of hypergeometric orthogonal polynomials. They are defined in terms of generalized hypergeometric functions by
:
{{harvs|txt | last1=Koekoek | first1=Roelof | last2=Lesky | first2=Peter A. | last3=Swarttouw | first3=René F. | title=Hypergeometric orthogonal polynomials and their q-analogues | publisher=Springer-Verlag | location=Berlin, New York | series=Springer Monographs in Mathematics | isbn=978-3-642-05013-8 | doi=10.1007/978-3-642-05014-5 | mr=2656096 | year=2010|loc=14}} give a detailed list of their properties.
Closely related polynomials include the dual Hahn polynomials Rn(x;γ,δ,N), the Hahn polynomials Qn(x;a,b,c), and the continuous dual Hahn polynomials Sn(x;a,b,c). These polynomials all have q-analogs with an extra parameter q, such as the q-Hahn polynomials Qn(x;α,β, N;q), and so on.
Orthogonality
The continuous Hahn polynomials pn(x;a,b,c,d) are orthogonal with respect to the weight function
:
In particular, they satisfy the orthogonality relationKoekoek, Lesky, & Swarttouw (2010), p. 200.Askey, R. (1985), "Continuous Hahn polynomials", J. Phys. A: Math. Gen. 18: pp. L1017-L1019.Andrews, Askey, & Roy (1999), p. 333.
:
&\qquad\qquad=\frac{\Gamma(n+a+c)\,\Gamma(n+a+d)\,\Gamma(n+b+c)\,\Gamma(n+b+d)}{n!(2n+a+b+c+d-1)\,\Gamma(n+a+b+c+d-1)}\,\delta_{n m}\end{align}
for , , , , , .
Recurrence and difference relations
The sequence of continuous Hahn polynomials satisfies the recurrence relationKoekoek, Lesky, & Swarttouw (2010), p. 201.
:
:
\text{where}\quad&p_n(x)=\frac{n!(n+a+b+c+d-1)!}{(2n+a+b+c+d-1)!}p_n(x;a,b,c,d),\\
&A_n=-\frac{(n+a+b+c+d-1)(n+a+c)(n+a+d)}{(2n+a+b+c+d-1)(2n+a+b+c+d)},\\
\text{and}\quad&C_n=\frac{n(n+b+c-1)(n+b+d-1)}{(2n+a+b+c+d-2)(2n+a+b+c+d-1)}.
\end{align}
Rodrigues formula
The continuous Hahn polynomials are given by the Rodrigues-like formulaKoekoek, Lesky, & Swarttouw (2010), p. 202.
:
&\qquad=\frac{(-1)^n}{n!}\frac{d^n}{dx^n}\left(\Gamma\left(a+\frac{n}{2}+ix\right)\,\Gamma\left(b+\frac{n}{2}+ix\right)\,\Gamma\left(c+\frac{n}{2}-ix\right)\,\Gamma\left(d+\frac{n}{2}-ix\right)\right).\end{align}
Generating functions
The continuous Hahn polynomials have the following generating function:Koekoek, Lesky, & Swarttouw (2010), p. 202.
:
&\qquad=(1-t)^{1-a-b-c-d}{}_3F_2\left( \begin{array}{c} \frac12(a+b+c+d-1), \frac12(a+b+c+d), a+ix\\ a+c, a+d\end{array} ; -\frac{4t}{(1-t)^2} \right).\end{align}
A second, distinct generating function is given by
:
Relation to other polynomials
- The Wilson polynomials are a generalization of the continuous Hahn polynomials.
- The Bateman polynomials Fn(x) are related to the special case a=b=c=d=1/2 of the continuous Hahn polynomials by
:
- The Jacobi polynomials Pn(α,β)(x) can be obtained as a limiting case of the continuous Hahn polynomials:Koekoek, Lesky, & Swarttouw (2010), p. 203.
:
References
{{Reflist}}
- {{Citation | last1=Hahn | first1=Wolfgang | title=Über Orthogonalpolynome, die q-Differenzengleichungen genügen | doi=10.1002/mana.19490020103 | mr=0030647 | year=1949 | journal=Mathematische Nachrichten | issn=0025-584X | volume=2 | pages=4–34}}
- {{Citation | last1=Koekoek | first1=Roelof | last2=Lesky | first2=Peter A. | last3=Swarttouw | first3=René F. | title=Hypergeometric orthogonal polynomials and their q-analogues | publisher=Springer-Verlag | location=Berlin, New York | series=Springer Monographs in Mathematics | isbn=978-3-642-05013-8 | doi=10.1007/978-3-642-05014-5 | mr=2656096 | year=2010}}
- {{dlmf|id=18.19|title=Hahn Class: Definitions|first=Tom H. |last=Koornwinder|first2=Roderick S. C.|last2= Wong|first3=Roelof |last3=Koekoek||first4=René F. |last4=Swarttouw}}
- {{Citation | last1=Andrews | first1=George E. | last2=Askey | first2 = Richard | last3=Roy | first3=Ranjan | title=Special functions | publisher=Cambridge University Press | location=Cambridge | series=Encyclopedia of Mathematics and its Applications 71 | isbn=978-0-521-62321-6 | year=1999}}