Conway group Co2

{{Short description|Sporadic simple group}}

{{for|general background and history of the Conway sporadic groups|Conway group}}

{{DISPLAYTITLE:Conway group Co2}}

{{Group theory sidebar |Finite}}

In the area of modern algebra known as group theory, the Conway group Co2 is a sporadic simple group of order

:   42,305,421,312,000

: = 218{{·}}36{{·}}53{{·}}7{{·}}11{{·}}23

: ≈ 4{{e|13}}.

History and properties

Co2 is one of the 26 sporadic groups and was discovered by {{harvs |authorlink=John Horton Conway |last=Conway |year1=1968 |year2=1969}} as the group of automorphisms of the Leech lattice Λ fixing a lattice vector of type 2. It is thus a subgroup of Co0. It is isomorphic to a subgroup of Co1. The direct product 2×Co2 is maximal in Co0.

The Schur multiplier and the outer automorphism group are both trivial.

Representations

Co2 acts as a rank 3 permutation group on 2300 points. These points can be identified with planar hexagons in the Leech lattice having 6 type 2 vertices.

Co2 acts on the 23-dimensional even integral lattice with no roots of determinant 4, given as a sublattice of the Leech lattice orthogonal to a norm 4 vector. Over the field with 2 elements it has a 22-dimensional faithful representation; this is the smallest faithful representation over any field.

{{harvtxt|Feit|1974}} showed that if a finite group has an absolutely irreducible faithful rational representation of dimension 23 and has no subgroups of index 23 or 24 then it is contained in either Z/2Z × Co2 or Z/2Z × Co3.

The Mathieu group M23 is isomorphic to a maximal subgroup of Co2 and one representation, in permutation matrices, fixes the type 2 vector u = (-3,123). A block sum ζ of the involution η =

:

{\mathbf 1/2} \left ( \begin{matrix}

1 & -1 & -1 & -1 \\

-1 & 1 & -1 & -1 \\

-1 & -1 & 1 & -1 \\

-1 & -1 & -1 & 1 \end{matrix} \right )

and 5 copies of -η also fixes the same vector. Hence Co2 has a convenient matrix representation inside the standard representation of Co0. The trace of ζ is -8, while the involutions in M23 have trace 8.

A 24-dimensional block sum of η and -η is in Co0 if and only if the number of copies of η is odd.

Another representation fixes the vector v = (4,-4,022). A monomial and maximal subgroup includes a representation of M22:2, where any α interchanging the first 2 co-ordinates restores v by then negating the vector. Also included are diagonal involutions corresponding to octads (trace 8), 16-sets (trace -8), and dodecads (trace 0). It can be shown that Co2 has just 3 conjugacy classes of involutions. η leaves (4,-4,0,0) unchanged; the block sum ζ provides a non-monomial generator completing this representation of Co2.

There is an alternate way to construct the stabilizer of v. Now u and u+v = (1,-3,122) are vertices of a 2-2-2 triangle (vide infra). Then u, u+v, v, and their negatives form a coplanar hexagon fixed by ζ and M22; these generate a group Fi21 ≈ U6(2). α (vide supra) extends this to Fi21:2, which is maximal in Co2. Lastly, Co0 is transitive on type 2 points, so that a 23-cycle fixing u has a conjugate fixing v, and the generation is completed.

Maximal subgroups

Some maximal subgroups fix or reflect 2-dimensional sublattices of the Leech lattice. It is usual to define these planes by h-k-l triangles: triangles including the origin as a vertex, with edges (differences of vertices) being vectors of types h, k, and l.

{{harvtxt|Wilson|2009}} found the 11 conjugacy classes of maximal subgroups of Co2 as follows:

class="wikitable"

|+ Maximal subgroups of Co2

No.StructureOrderIndexComments
1Fi21:2 ≈ U6(2):2style="text-align:right;"|18,393,661,440
= 216·36·5·7·11
align=right| 2,300
= 22·52·23
symmetry/reflection group of coplanar hexagon of 6 type 2 points; fixes one hexagon in a rank 3 permutation representation of Co2 on 2300 such hexagons. Under this subgroup the hexagons are split into orbits of 1, 891, and 1408. Fi21 fixes a 2-2-2 triangle defining the plane.
2210:M22:2style="text-align:right;"| 908,328,960
= 218·32·5·7·11
align=right| 46,575
= 34·52·23
has monomial representation described above; 210:M22 fixes a 2-2-4 triangle.
3McLstyle="text-align:right;"| 898,128,000
= 27·36·53·7·11
align=right| 47,104
= 211·23
fixes a 2-2-3 triangle
42{{su|a=l|b=+|p=1+8}}:Sp6(2)style="text-align:right;"| 743,178,240
= 218·34·5·7
align=right| 56,925
= 32·52·11·23
centralizer of an involution of class 2A (trace -8)
5HS:2style="text-align:right;"| 88,704,000
= 210·32·53·7·11
align=right| 476,928
= 28·34·23
fixes a 2-3-3 triangle or exchanges its type 3 vertices with sign change
6(24 × {{nowrap|2{{su|a=l|b=+|p=1+6}}}}).A8style="text-align:right;"| 41,287,680
= 217·32·5·7
align=right| 1,024,650
= 2·34·52·11·23
centralizer of an involution of class 2B
7U4(3):D8style="text-align:right;"| 26,127,360
= 210·36·5·7
align=right| 1,619,200
= 28·52·11·23
824+10.(S5 × S3)style="text-align:right;"| 11,796,480
= 218·32·5
align=right| 3,586,275
= 34·52·7·11·23
9M23style="text-align:right;"| 10,200,960
= 27·32·5·7·11·23
align=right| 4,147,200
= 211·34·52
fixes a 2-3-4 triangle
10{{nowrap|3{{su|a=l|b=+|p=1+4}}}}.{{nowrap|2{{su|a=l|b= –|p=1+4}}}}.S5style="text-align:right;"| 933,120
= 28·36·5
align=right| 45,337,600
= 210·52·7·11·23
normalizer of a subgroup of order 3 (class 3A)
115{{su|a=l|b=+|p=1+2}}:4S4style="text-align:right;"| 12,000
= 25·3·53
align=right|3,525,451,776
= 213·35·7·11·23
normalizer of a subgroup of order 5 (class 5A)

Conjugacy classes

Traces of matrices in a standard 24-dimensional representation of Co2 are shown.{{harvtxt|Wilson|1983}} The names of conjugacy classes are taken from the Atlas of Finite Group Representations. {{Cite web|url=http://brauer.maths.qmul.ac.uk/Atlas/v3/spor/Co2/#ccls|title=ATLAS: Conway group Co2}}

Centralizers of unknown structure are indicated with brackets.

class="wikitable" style="margin: 1em auto;"
ClassOrder of centralizerCentralizerSize of classTrace ||
1Aall Co2124
2A743,178,24021+8:Sp6(2)32·52·11·23-8
2B41,287,68021+4:24.A82·34·5211·238
2C1,474,560210.A6.2223·34·52·7·11·230
3A466,56031+421+4A5211·52·7·11·23-3
3B155,5203×U4(2).2211·3·52·7·11·236
4A3,096,5764.26.U3(3).224·33·53·11·238
4B122,880[210]S525·35·52·7·11·23-4
4C73,728[213.32]25·34·53·7·11·234
4D49,152[214.3]24·35·53·7·11·230
4E6,144[211.3]27·35·53·7·11·234
4F6,144[211.3]27·35·53·7·11·230
4G1,280[28.5]210·36·52·7·11·230
5A3,00051+22A4215·35·7·11·23-1
5B6005×S5215·35·5·7·11·234
6A5,7603.21+4A5211·34·52·7·11·235
6B5,184[26.34]212·32·53·7·11·231
6C4,3206×S6213·33·52·7·11·234
6D3,456[27.33]211·33·53·7·11·23-2
6E576[26.32]212·34·53·7·11·232
6F288[25.32]213·34·53·7·11·230
7A567×D8215·36·53·11·2333
8A768[28.3]|210·35·53·7·11·230
8B768[28.3]|210·35·53·7·11·23-2
8C512[29]|29·36·53·7·11·234
8D512[29]29·36·53·7·11·230
8E256[28]210·36·53·7·11·232
8F64[26]212·36·53·7·11·232
9A549×S3217·33·53·7·11·233
10A1205×2.A4215·35·52·7·11·233
10B6010×S3216·35·52·7·11·232
10C405×D8215·36·52·7·11·230
11A1111218·36·53·7·232
12A864[25.33]213·33·53·7·11·23-1
12B288[25.32]213·34·53·7·11·231
12C288[25.32]213·34·53·7·11·232
12D288[25.32]213·34·53·7·11·23-2
12E96[25.3]213·35·53·7·11·233
12F96[25.3]213·35·53·7·11·232
12G48[24.3]214·35·53·7·11·231
12H48[24.3]214·35·53·7·11·230
14A565×D8215·36·53·11·23-1
14B2814×2216·36·53·11·231rowspan = "2"| power equivalent
14C2814×2216·36·53·11·231
15A3030217·35·52·7·11·231
15B3030217·35·52·7·11·232rowspan = "2"| power equivalent
15C3030217·35·52·7·11·232
16A3216×2213·36·53·7·11·232
16B3216×2213·36·53·7·11·230
18A1818217·34·53·7·11·231
20A2020216·36·52·7·11·231
20B2020216·36·52·7·11·230
23A2323218·36·53·7·111rowspan = "2"| power equivalent
23B2323218·36·53·7·111
24A2424215·35·53·7·11·230
24B2424215·35·53·7·11·231
28A2828216·36·53·11·231
30A3030217·35·52·7·11·23-1
30B3030217·35·52·7·11·230
30C3030217·35·52·7·11·230

References

  • {{Citation | last1=Conway | first1=John Horton | author1-link=John Horton Conway | title=A perfect group of order 8,315,553,613,086,720,000 and the sporadic simple groups | mr=0237634 | year=1968 | journal=Proceedings of the National Academy of Sciences of the United States of America | volume=61 | pages=398–400 | doi=10.1073/pnas.61.2.398 | issue=2| pmc=225171 | pmid=16591697| bibcode=1968PNAS...61..398C | doi-access=free }}
  • {{Citation | last1=Conway | first1=John Horton | author1-link=John Horton Conway | title=A group of order 8,315,553,613,086,720,000 | mr=0248216 | year=1969 | journal=The Bulletin of the London Mathematical Society | issn=0024-6093 | volume=1 | pages=79–88 | doi=10.1112/blms/1.1.79}}
  • {{Citation | last1=Conway | first1=John Horton | author1-link=John Horton Conway | editor1-last=Powell | editor1-first=M. B. | editor2-last=Higman | editor2-first=Graham | editor2-link=Graham Higman | title=Finite simple groups | url=https://books.google.com/books?id=TPPkAAAAIAAJ | publisher=Academic Press | location=Boston, MA | series=Proceedings of an Instructional Conference organized by the London Mathematical Society (a NATO Advanced Study Institute), Oxford, September 1969. | isbn=978-0-12-563850-0 | mr=0338152 | year=1971 | chapter=Three lectures on exceptional groups | pages=215–247}} Reprinted in {{harvtxt|Conway|Sloane|1999|loc= 267–298}}
  • {{Citation | last1=Conway | first1=John Horton | author1-link=John Horton Conway | last2=Sloane | first2=Neil J. A. | author2-link=Neil Sloane | title=Sphere Packings, Lattices and Groups | url=https://books.google.com/books?id=upYwZ6cQumoC | publisher=Springer-Verlag | location=Berlin, New York | edition=3rd | series=Grundlehren der Mathematischen Wissenschaften | isbn=978-0-387-98585-5 | mr=0920369 | year=1999 | volume=290 | doi=10.1007/978-1-4757-2016-7}}
  • {{Citation | last1=Feit | first1=Walter | author1-link=Walter Feit | title=On integral representations of finite groups | doi=10.1112/plms/s3-29.4.633 | mr=0374248 | year=1974 | journal=Proceedings of the London Mathematical Society |series=Third Series | issn=0024-6115 | volume=29 | issue=4 | pages=633–683}}
  • {{Citation | last1=Thompson | first1=Thomas M. | title=From error-correcting codes through sphere packings to simple groups | url=https://books.google.com/books?id=ggqxuG31B3cC | publisher=Mathematical Association of America | series=Carus Mathematical Monographs | isbn=978-0-88385-023-7 | mr=749038 | year=1983 | volume=21}}
  • {{Citation | last1=Conway | first1=John Horton | author1-link=John Horton Conway | last2=Parker | first2=Richard A. | last3=Norton | first3=Simon P. | last4=Curtis | first4=R. T. | last5=Wilson | first5=Robert A. | title=Atlas of finite groups | url=https://books.google.com/books?id=38fEMl2-Fp8C | publisher=Oxford University Press | isbn=978-0-19-853199-9 | mr=827219 | year=1985}}
  • {{Citation | last1=Griess | first1=Robert L. Jr. | author1-link=R. L. Griess | title=Twelve sporadic groups | publisher=Springer-Verlag | location=Berlin, New York | series=Springer Monographs in Mathematics | isbn=978-3-540-62778-4 | mr=1707296 | year=1998 | doi=10.1007/978-3-662-03516-0}}
  • {{Citation | last1=Wilson | first1=Robert A. | title=The maximal subgroups of Conway's group ·2 | doi=10.1016/0021-8693(83)90069-8 | mr=716772 | year=1983 | journal=Journal of Algebra | issn=0021-8693 | volume=84 | issue=1 | pages=107–114| doi-access= }}
  • {{Citation | last1=Wilson | first1=Robert A. | title=The finite simple groups. | publisher=Springer-Verlag | location=Berlin, New York | series=Graduate Texts in Mathematics 251 | isbn=978-1-84800-987-5 | doi=10.1007/978-1-84800-988-2 | zbl=1203.20012 | year=2009| volume=251 }}

;Specific