Crystal Ball function
The Crystal Ball function, named after the Crystal Ball Collaboration (hence the capitalized initial letters), is a probability density function commonly used to model various lossy processes in high-energy physics. It consists of a Gaussian core portion and a power-law low-end tail, below a certain threshold. The function itself and its first derivative are both continuous.
The Crystal Ball function is given by:
:
A \cdot (B - \frac{x - \bar x}{\sigma})^{-n}, & \mbox{for }\frac{x - \bar x}{\sigma} \leqslant -\alpha \end{cases}
where
:,
:,
:,
:,
:.
(Skwarnicki 1986) is a normalization factor and , , and are parameters which are fitted with the data. erf is the error function.
External links
- J. E. Gaiser, [http://www.slac.stanford.edu/cgi-wrap/getdoc/slac-r-255.pdf Appendix-F Charmonium Spectroscopy from Radiative Decays of the J/Psi and Psi-Prime, Ph.D. Thesis], SLAC-R-255 (1982). (This is a 205-page document in .pdf form – the function is defined on p. 178.)
- M. J. Oreglia, [http://www.slac.stanford.edu/cgi-wrap/getdoc/slac-r-236.pdf A Study of the Reactions psi prime --> gamma gamma psi, Ph.D. Thesis], SLAC-R-236 (1980), Appendix D.
- T. Skwarnicki, [http://inspirehep.net/record/230779/files/f31-86-02.pdf A study of the radiative CASCADE transitions between the Upsilon-Prime and Upsilon resonances, Ph.D Thesis], DESY F31-86-02(1986), Appendix E.
{{ProbDistributions|continuous-infinite}}
{{DEFAULTSORT:Crystal Ball Function}}
Category:Functions and mappings