Cyclotruncated 6-simplex honeycomb

class="wikitable" align="right" style="margin-left:10px" width="250"

!bgcolor=#e7dcc3 colspan=2|Cyclotruncated 6-simplex honeycomb

bgcolor=#ffffff align=center colspan=2|(No image)
bgcolor=#e7dcc3|TypeUniform honeycomb
bgcolor=#e7dcc3|FamilyCyclotruncated simplectic honeycomb
bgcolor=#e7dcc3|Schläfli symbolt0,1{3[7]}
bgcolor=#e7dcc3|Coxeter diagram{{CDD|branch_11|3ab|nodes|3ab|nodes|split2|node}}
bgcolor=#e7dcc3|6-face types{35} 30px
t{35} 30px
2t{35} 30px
3t{35} 30px
bgcolor=#e7dcc3|Vertex figureElongated 5-simplex antiprism
bgcolor=#e7dcc3|Symmetry{\tilde{A}}_6×2, {{Brackets|3{{Bracket|7}}}}
bgcolor=#e7dcc3|Propertiesvertex-transitive

In six-dimensional Euclidean geometry, the cyclotruncated 6-simplex honeycomb is a space-filling tessellation (or honeycomb). The tessellation fills space by 6-simplex, truncated 6-simplex, bitruncated 6-simplex, and tritruncated 6-simplex facets. These facet types occur in proportions of 2:2:2:1 respectively in the whole honeycomb.

Structure

It can be constructed by seven sets of parallel hyperplanes that divide space. The hyperplane intersections generate cyclotruncated 5-simplex honeycomb divisions on each hyperplane.

Related polytopes and honeycombs

{{6-simplex honeycomb family}}

See also

Notes

{{reflist}}

References

  • Norman Johnson Uniform Polytopes, Manuscript (1991)
  • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, {{ISBN|978-0-471-01003-6}} [http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471010030.html]
  • (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10] (1.9 Uniform space-fillings)
  • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]

{{Honeycombs}}

Category:Honeycombs (geometry)

Category:7-polytopes