cyclotruncated 5-simplex honeycomb

class="wikitable" align="right" style="margin-left:10px" width="250"

!bgcolor=#e7dcc3 colspan=2|Cyclotruncated 5-simplex honeycomb

bgcolor=#ffffff align=center colspan=2|(No image)
bgcolor=#e7dcc3|TypeUniform honeycomb
bgcolor=#e7dcc3|FamilyCyclotruncated simplectic honeycomb
bgcolor=#e7dcc3|Schläfli symbolt0,1{3[6]}
bgcolor=#e7dcc3|Coxeter diagram{{CDD|node|split1|nodes_10lur|3ab|nodes_10lru|split2|node}} or {{CDD|branch_11|3ab|nodes|3ab|branch}}
bgcolor=#e7dcc3|5-face types{3,3,3,3} 40px
t{3,3,3,3} 40px
2t{3,3,3,3} 40px
bgcolor=#e7dcc3|4-face types{3,3,3} 40px
t{3,3,3} 40px
bgcolor=#e7dcc3|Cell types{3,3} 40px
t{3,3} 40px
bgcolor=#e7dcc3|Face types{3} 40px
t{3} 40px
bgcolor=#e7dcc3|Vertex figure120px
Elongated 5-cell antiprism
bgcolor=#e7dcc3|Coxeter groups{\tilde{A}}_5×22, {{Brackets|3{{Bracket|6}}}}
bgcolor=#e7dcc3|Propertiesvertex-transitive

In five-dimensional Euclidean geometry, the cyclotruncated 5-simplex honeycomb or cyclotruncated hexateric honeycomb is a space-filling tessellation (or honeycomb). It is composed of 5-simplex, truncated 5-simplex, and bitruncated 5-simplex facets in a ratio of 1:1:1.

Structure

Its vertex figure is an elongated 5-cell antiprism, two parallel 5-cells in dual configurations, connected by 10 tetrahedral pyramids (elongated 5-cells) from the cell of one side to a point on the other. The vertex figure has 8 vertices and 12 5-cells.

It can be constructed as six sets of parallel hyperplanes that divide space. The hyperplane intersections generate cyclotruncated 5-cell honeycomb divisions on each hyperplane.

Related polytopes and honeycombs

{{5-simplex honeycomb family}}

See also

Notes

{{reflist}}

References

  • Norman Johnson Uniform Polytopes, Manuscript (1991)
  • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, {{ISBN|978-0-471-01003-6}} [http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471010030.html]
  • (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10] (1.9 Uniform space-fillings)
  • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]

{{Honeycombs}}

Category:Honeycombs (geometry)

Category:6-polytopes