DNAJC28
{{Short description|Protein-coding gene in the species Homo sapiens}}
{{Infobox_gene}}
DnaJ homolog subfamily C member 28 is a protein that in humans is encoded by the DNAJC28 gene. It's a member of chaperone DnaJ family. The family is also known as Hsp40 (heat shock protein 40 kDa).
Gene
File:DNAJC28_Gene_Neighborhood.jpg
The DNAJC28 gene is located on the negative strand of Chromosome 21 (21q22.11), spanning 3,784 base pairs.{{Cite web |title=AceView: Gene:DNAJC28, a comprehensive annotation of human, mouse and worm genes with mRNAs or ESTsAceView. |url=https://www.ncbi.nlm.nih.gov/IEB/Research/Acembly/av.cgi?db=human&term=DNAJC28&submit=Go |access-date=2024-09-26 |website=www.ncbi.nlm.nih.gov}} Also known as C21orf78 or (previously) C21orf55 in humans, this gene has orthologs in animals, plants, and fungi.{{Cite web |title=DNAJC28 orthologs |url=https://www.ncbi.nlm.nih.gov/gene/54943/ortholog/?scope=7776 |access-date=2024-09-26 |website=NCBI |language=en}} DNAJC28 has only 2 exons, the first of which is the only one that differs between transcript variants.
RNA and Transcriptional variants
DNAJC28 has a total of 3 transcriptional variants, all of which differ from transcript variant 1 in the 5’ UTR and encode an identical protein. All transcripts contain the same 2 exons, with exon 2 completely containing the coding sequence.{{Cite web |date=2024-08-05 |title=Homo sapiens DnaJ heat shock protein family (Hsp40) member C28 (DNAJC28), transcript variant 1, mRNA |url=https://www.ncbi.nlm.nih.gov/nuccore/NM_017833.5 |access-date=2024-12-12 |website=National Center of Biotechnology Information}}
class="wikitable"
|+RNA and Protein Products of Each DNAJC28 Transcript Variant !DNAJC28 Transcript Variant Number !Accession Number !mRNA length (nucleotides) !5'UTR length (nucleotides) !Protein Length (amino acids) |
1
|NM_017833.5 |1706 |367 |388 |
2
|NM_001040192.3 |1485 |146 |388 |
3
|NM_001320746.3 |1462 |123 |388 |
Protein
The protein DNAJC28 is 388 amino acids long and contains a conserved N-terminal J (DnaJ) domain, which is critical for interaction with Hsp70s.{{Cite journal |last=Morano |first=Kevin A. |date=2007-05-18 |title=New Tricks for an Old Dog: The Evolving World of Hsp70 |url=https://nyaspubs.onlinelibrary.wiley.com/doi/10.1196/annals.1391.018 |journal=Annals of the New York Academy of Sciences |language=en |volume=1113 |issue=1 |pages=1–14 |doi=10.1196/annals.1391.018 |pmid=17513460 |issn=0077-8923}} Molecular weight and isoelectric point of human DNAJC28 without post-translational modification are 45.8 kDal and 9.57 pI, respectively.{{Cite web |title=SAPS Sequence Statistics |url=https://www.ebi.ac.uk/jdispatcher/seqstats/saps |access-date=2024-12-05 |website=www.ebi.ac.uk}}{{Cite web |title=Expasy - Compute pI/Mw tool |url=https://web.expasy.org/compute_pi/ |access-date=2024-12-05 |website=web.expasy.org}} DNAJC28 has no isoforms. No pattern was found across orthologs for amino acid composition.
= Conserved Regions =
DNAJC28 contains a J domain, which is a defining feature of the DnaJ/Hsp40 family. J domains are highly conserved and are an integral part of protein translation, folding, translocation, and degradation through stimulating the ATPase activity of members of the Hsp70 family.{{Cite web |title=CDD Conserved Protein Domain Family: DnaJ |url=https://www.ncbi.nlm.nih.gov/Structure/cdd/cddsrv.cgi?uid=99751 |access-date=2024-12-05 |website=www.ncbi.nlm.nih.gov}} Each J domain is around 70 base pairs long, composed of four alpha helices, and have a highly conserved His-Pro-Asp (HPD) tripeptide motif between the second and third helices.{{Cite journal |last1=Kampinga |first1=Harm H. |last2=Craig |first2=Elizabeth A. |date=2010-08-01 |title=The HSP70 chaperone machinery: J proteins as drivers of functional specificity |journal=Nature Reviews Molecular Cell Biology |language=en |volume=11 |issue=8 |pages=579–592 |doi=10.1038/nrm2941 |issn=1471-0072 |pmc=3003299 |pmid=20651708}}{{Cite journal |last1=Alderson |first1=Thomas Reid |last2=Kim |first2=Jin Hae |last3=Markley |first3=John Lute |date=2016-07-06 |title=Dynamical Structures of Hsp70 and Hsp70-Hsp40 Complexes |journal=Structure |language=en |volume=24 |issue=7 |pages=1014–1030 |doi=10.1016/j.str.2016.05.011 |pmc=4938735 |pmid=27345933}}
There is a conserved domain of unknown function (DUF1992) from amino acids 203-272.{{Cite web |title=CDD Conserved Protein Domain Family: DJC28_CD |url=https://www.ncbi.nlm.nih.gov/Structure/cdd/cddsrv.cgi?ascbin=8&maxaln=10&seltype=2&uid=pfam09350 |access-date=2024-12-05 |website=www.ncbi.nlm.nih.gov}}
There is a coiled-coil region from approximately amino acids 288 to 318 that is conserved throughout all listed orthologs (through fungi and plants).{{Cite journal |last1=Zimmermann |first1=Lukas |last2=Stephens |first2=Andrew |last3=Nam |first3=Seung-Zin |last4=Rau |first4=David |last5=Kübler |first5=Jonas |last6=Lozajic |first6=Marko |last7=Gabler |first7=Felix |last8=Söding |first8=Johannes |last9=Lupas |first9=Andrei N. |last10=Alva |first10=Vikram |date=2018-07-20 |title=A Completely Reimplemented MPI Bioinformatics Toolkit with a New HHpred Server at its Core |url=https://linkinghub.elsevier.com/retrieve/pii/S0022283617305879 |journal=Journal of Molecular Biology |language=en |volume=430 |issue=15 |pages=2237–2243 |doi=10.1016/j.jmb.2017.12.007|pmid=29258817 }}{{Cite journal |last1=Paysan-Lafosse |first1=Typhaine |last2=Blum |first2=Matthias |last3=Chuguransky |first3=Sara |last4=Grego |first4=Tiago |last5=Pinto |first5=Beatriz Lázaro |last6=Salazar |first6=Gustavo |last7=Bileschi |first7=Maxwell |last8=Bork |first8=Peer |last9=Bridge |first9=Alan |last10=Colwell |first10=Lucy |last11=Gough |first11=Julian |last12=Haft |first12=Daniel |last13=Letunić |first13=Ivica |last14=Marchler-Bauer |first14=Aron |last15=Mi |first15=Huaiyu |date=2023-01-06 |title=InterPro in 2022 |url=https://academic.oup.com/nar/article/51/D1/D418/6814474 |journal=Nucleic Acids Research |language=en |volume=51 |issue=D1 |pages=D418–D427 |doi=10.1093/nar/gkac993 |issn=0305-1048 |pmc=9825450 |pmid=36350672}}
= Tertiary Structure =
File:Predicted_DNAJC28_J_domain.png
The E. coli DnaJ protein's J domain has been extensively analyzed and found to be of very similar tertiary structure to J domains of other members of the DnaJ family.{{Citation |last1=Faust |first1=Ofrah |title=Structural and Biochemical Properties of Hsp40/Hsp70 Chaperone System |date=2020 |work=HSF1 and Molecular Chaperones in Biology and Cancer |volume=1243 |pages=3–20 |editor-last=Mendillo |editor-first=Marc Laurence |url=https://link.springer.com/10.1007/978-3-030-40204-4_1 |access-date=2024-12-05 |place=Cham |publisher=Springer International Publishing |language=en |doi=10.1007/978-3-030-40204-4_1 |isbn=978-3-030-40203-7 |last2=Rosenzweig |first2=Rina |pmid=32297208 |editor2-last=Pincus |editor2-first=David |editor3-last=Scherz-Shouval |editor3-first=Ruth}} DNAJC28's J domain tertiary structure was predicted and annotated based on the characteristics of other J domains.
= Interacting Proteins =
DNAJC28 was found to mostly interact with proteins involved with the mitochondria and mitochondrial ATP synthase. Mitochondrial Hsp70 is also known to control F1F0 ATP synthase assembly and control the quality of F1F0 ATP synthase components.{{Cite journal |last1=Song |first1=Jiyao |last2=Steidle |first2=Liesa |last3=Steymans |first3=Isabelle |last4=Singh |first4=Jasjot |last5=Sanner |first5=Anne |last6=Böttinger |first6=Lena |last7=Winter |first7=Dominic |last8=Becker |first8=Thomas |date=2023-01-03 |title=The mitochondrial Hsp70 controls the assembly of the F1FO-ATP synthase |journal=Nature Communications |language=en |volume=14 |issue=1 |pages=39 |doi=10.1038/s41467-022-35720-5 |issn=2041-1723 |pmc=9810599 |pmid=36596815}}{{Cite journal |last1=Papathanassiu |first1=Adonia E. |last2=MacDonald |first2=Nicholas J. |last3=Bencsura |first3=Akos |last4=Vu |first4=Hong A. |date=2006-06-23 |title=F1F0-ATP synthase functions as a co-chaperone of Hsp90–substrate protein complexes |url=https://linkinghub.elsevier.com/retrieve/pii/S0006291X06009582 |journal=Biochemical and Biophysical Research Communications |language=en |volume=345 |issue=1 |pages=419–429 |doi=10.1016/j.bbrc.2006.04.104}} Other mitochondrial protein interactions were found on BioGrid.{{Cite journal |last1=Piette |first1=Benjamin L. |last2=Alerasool |first2=Nader |last3=Lin |first3=Zhen-Yuan |last4=Lacoste |first4=Jessica |last5=Lam |first5=Mandy Hiu Yi |last6=Qian |first6=Wesley Wei |last7=Tran |first7=Stephanie |last8=Larsen |first8=Brett |last9=Campos |first9=Eric |last10=Peng |first10=Jian |last11=Gingras |first11=Anne-Claude |last12=Taipale |first12=Mikko |date=2021-06-17 |title=Comprehensive interactome profiling of the human Hsp70 network highlights functional differentiation of J domains |url=https://linkinghub.elsevier.com/retrieve/pii/S1097276521003178 |journal=Molecular Cell |language=English |volume=81 |issue=12 |pages=2549–2565.e8 |doi=10.1016/j.molcel.2021.04.012 |issn=1097-2765 |pmid=33957083}}{{Cite web |title=Comprehensive interactome profiling of the human Hsp70 network highlights functional differentiation of J domains. {{!}} BioGRID |url=https://thebiogrid.org/228319/publication/comprehensive-interactome-profiling-of-the-human-hsp70-network-highlights-functional-differentiation-of-j-domains.html |access-date=2024-12-12 |website=thebiogrid.org}}
class="wikitable"
|+DNAJC28 Protein Interactions !Hit !Full Name !Function !Location !Score |
IARS2
|isoleucyl-tRNA synthetase 2, mitochondrial |Catalyze aminoacylation of tRNA by linking cognate amino acid |Mitochondria, cytoplasm |935 |
LETM1
|leucine zipper and EF-hand containing transmembrane protein 1 |Maintains mitochondrial tubular shapes, required for cellular viability |Inner mitochondrial membrane |1535 |
SLC30A9
|solute carrier family 30 member 9 |Enables zinc ion transmembrane transporter activity, regulates mitochondria organization |Mitochondrial membrane, ER, cytoplasm |1570 |
TIMM44
|translocase of inner mitochondrial membrane 44 |Mediates binding of Hsp70 to translocase of inner mitochondrial membrane 23 complex |Mitochondrial membrane |2270 |
Orthologs
File:DNAJC28_Evolutionary_History.png
There are three distinct subfamilies within the DnaJ family, of which subfamily A has the most taxonomically distant homolog of E. coli DnaJ, suggesting that it evolved earlier in history than the other subfamilies.{{Cite web |title=DnaJ [Escherichia coli] - Protein - NCBI |url=https://www.ncbi.nlm.nih.gov/protein/AAA00009.1 |access-date=2024-12-12 |website=www.ncbi.nlm.nih.gov}} DNAJC28 has its most distant orthologs in fungi. There are many DnaJ pseudogenes that are homologous only to part of the J-protein but tend to lack a majority of it.{{Cite journal |last1=Kampinga |first1=Harm H. |last2=Hageman |first2=Jurre |last3=Vos |first3=Michel J. |last4=Kubota |first4=Hiroshi |last5=Tanguay |first5=Robert M. |last6=Bruford |first6=Elspeth A. |last7=Cheetham |first7=Michael E. |last8=Chen |first8=Bin |last9=Hightower |first9=Lawrence E. |date=2009-01-01 |title=Guidelines for the nomenclature of the human heat shock proteins |journal=Cell Stress and Chaperones |volume=14 |issue=1 |pages=105–111 |doi=10.1007/s12192-008-0068-7 |issn=1355-8145 |pmc=2673902 |pmid=18663603}}
DNAJC28 has one distant paralog, Component of Oligomeric Golgi Complex 4 (COG4).{{Cite web |last=Database |first=GeneCards Human Gene |title=DNAJC28 Gene - GeneCards {{!}} DJC28 Protein {{!}} DJC28 Antibody |url=https://www.genecards.org/cgi-bin/carddisp.pl?gene=DNAJC28 |archive-url=http://web.archive.org/web/20221207232241/https://www.genecards.org/cgi-bin/carddisp.pl?gene=DNAJC28 |archive-date=2022-12-07 |access-date=2024-12-12 |website=www.genecards.org |language=en}}{{Cite web |title=Gene: COG4 (ENSG00000103051) - Paralogues - Homo_sapiens - Ensembl genome browser 113 |url=https://useast.ensembl.org/Homo_sapiens/Gene/Compara_Paralog?g=ENSG00000103051;r=16:70480568-70523560 |access-date=2024-12-12 |website=useast.ensembl.org}} COG4’s corresponding protein is a component of an oligomeric protein complex in the golgi apparatus that is involved in its structure and function, specifically retrograde transport.{{Cite web |title=conserved oligomeric Golgi complex subunit 4 isoform 1 [Homo sapiens] - Protein - NCBI |url=https://www.ncbi.nlm.nih.gov/protein/NP_056201.2 |access-date=2024-12-05 |website=www.ncbi.nlm.nih.gov}}
The gene DNAJC28 is evolving relatively slowly since it is not evolving much faster than Cytochrome C and is significantly slower than Fibrinogen Alpha, as shown by the dark blue trendline.
class="wikitable sortable"
|+Human DNAJC28 Orthologs ! class="unsortable" |Organism Type ! class="unsortable" |Species Name ! class="unsortable" |Common Name ! class="unsortable" |Taxonomic Group !Date of Divergence !% Identity !% Similarity ! class="unsortable" |Accession Number !Protein Length (Amino Acids) |
rowspan="4" |Mammal
|Human |Primates |0 |100.00% |100.00% |NP_060303.2 |388 |
Mus musculus
|House mouse |Rodentia |87 |72.49% |79.70% |NP_001093208.1 |409 |
Pteropus vampyrus
|Large flying fox |94 |86.49% |93.30% |XP_011363977.1 |384 |
Ornithorhynchus anatinus
|Platypus |180 |68.32% |79.40% |XP_007667935.2 |381 |
rowspan="2" |Reptile
|American alligator |319 |64.72% |75.10% |XP_059576706.1 |378 |
Sphaerodactylus townsendi
|Townsend's least gecko |319 |60.50% |73.10% |XP_048348340.1 |374 |
rowspan="2" |Bird
|Peregrin falcon |319 |59.47% |73.30% |XP_055657544.1 |372 |
Gallus gallus
|Chicken |319 |59.09% |72.80% |XP_004934562.2 |373 |
rowspan="2" |Amphibian
|Common toad |Anura |352 |58.70% |71.20% |XP_040279093.1 |384 |
Rhinatrema bivittatum
|Two-lined caecilians |352 |58.01% |71.90% |XP_029459412.1 |379 |
rowspan="4" |Fish
|West African lungfish |408 |50.82% |67.40% |XP_043928883.1 |374 |
Latimeria chalumnae
|West Indian Ocean coelacanth |415 |54.80% |74.50% |XP_006001534.1 |379 |
Danio rerio
|Zebrafish |429 |47.40% |66.00% |NP_001017648.1 |376 |
Callorhinchus milii
|Australian ghostshark |462 |54.23% |64.30% |XP_007904164.1 |376 |
Invertebrate
|Fruit fly |Insecta |686 |39.27% |50.60% |AAY55603.1 |355 |
rowspan="3" |Fungi
|Fungal plant pathogen |1275 |46.67% |26.80% |CEG77023.1 |518 |
Dacryopinax primogenitus
|Jelly fungi |1275 |37.84% |33.80% |XP_040633566.1 |481 |
Rhizomucor pusillus
|Human disease fungi |1275 |35.00% |34.50% |KAL1929861.1 |329 |
rowspan="3" |Plant
|Switchgrass |1530 |40.00% |24.60% |XP_039855031.1 |221 |
Populus trichocarpa
|Black cottonwood |1530 |37.14% |26.20% |XP_002322905.3 |221 |
Sphagnum troendelagicum
|Norwegian peat moss |1530 |36.50% |34.50% |CAK9220607.1 |261 |
Localization and Expression
File:DNAJC28_iTasser_Model_2_N-terminus.png
A mitochondrial presequence was predicted from amino acids 7-39. Amino acids 7-16 are a highly positively charged amphiphilicity region.{{Cite journal |last1=Fukasawa |first1=Yoshinori |last2=Tsuji |first2=Junko |last3=Fu |first3=Szu-Chin |last4=Tomii |first4=Kentaro |last5=Horton |first5=Paul |last6=Imai |first6=Kenichiro |date=April 2015 |title=MitoFates: Improved Prediction of Mitochondrial Targeting Sequences and Their Cleavage Sites* |journal=Molecular & Cellular Proteomics |language=en |volume=14 |issue=4 |pages=1113–1126 |doi=10.1074/mcp.M114.043083 |doi-access=free |pmc=4390256 |pmid=25670805}} A mitochondrial targeting signal presequence traditionally has a high composition of arginine, a very low amount of negatively charged residues at the N-terminus, and forms an amphipathic helix with a positively charged side and a hydrophobic side opposite it.{{Citation |last1=Nakai |first1=Kenta |title=Prediction of Protein Localization |date=2019 |encyclopedia=Encyclopedia of Bioinformatics and Computational Biology |pages=53–59 |url=https://linkinghub.elsevier.com/retrieve/pii/B9780128096338202707 |access-date=2024-12-05 |publisher=Elsevier |language=en |doi=10.1016/b978-0-12-809633-8.20270-7 |isbn=978-0-12-811432-2 |last2=Imai |first2=Kenichiro}}{{Cite journal |last1=Genge |first1=Marcel G. |last2=Mokranjac |first2=Dejana |date=2022-01-06 |title=Coordinated Translocation of Presequence-Containing Precursor Proteins Across Two Mitochondrial Membranes: Knowns and Unknowns of How TOM and TIM23 Complexes Cooperate With Each Other |journal=Frontiers in Physiology |language=English |volume=12 |doi=10.3389/fphys.2021.806426 |doi-access=free |issn=1664-042X |pmc=8770809 |pmid=35069261}} All of which are features of the DNAJC28 targeting presequence. The mitochondrial presequence cleavage site is predicted to be at amino acid 48.{{Cite web |title=PSORT II Prediction |url=https://psort.hgc.jp/form2.html |access-date=2024-12-05 |website=psort.hgc.jp}}
There is low, ubiquitous expression of DNAJC28 in all human tissues.{{Cite web |title=GDS3113 / 177128 |url=https://www.ncbi.nlm.nih.gov/geo/tools/profileGraph.cgi?ID=GDS3113:177128 |access-date=2024-12-05 |website=www.ncbi.nlm.nih.gov}} DNAJC28 is also expressed in almost all parts of the mouse brain, excluding the hypothalamus and pons.{{Cite web |title=Gene Detail :: Allen Brain Atlas: Mouse Brain |url=https://mouse.brain-map.org/gene/show/89904 |access-date=2024-12-05 |website=mouse.brain-map.org}}
Function
The DnaJ/Hsp40 family is one of the largest groups of molecular chaperones, characterized by their possession of a J domain (or DnaJ domain), which interacts with Hsp70.{{Citation |last1=Musskopf |first1=Maiara K |title=HSP40 / DNAJ Chaperones |date=2018 |work=eLS |pages=1–11 |url=https://onlinelibrary.wiley.com/doi/10.1002/9780470015902.a0027633 |access-date=2024-12-12 |publisher=John Wiley & Sons, Ltd |language=en |doi=10.1002/9780470015902.a0027633 |isbn=978-0-470-01590-2 |last2=de Mattos |first2=Eduardo P |last3=Bergink |first3=Steven |last4=Kampinga |first4=Harm H}} Hsp40s bind misfolded polypeptides or protein aggregates and deliver them to Hsp70 substrate-binding domains, greatly stimulating ATPase activity in the Hsp70 nucleotide-binding domain. Heat Shock Protein genes are generally activated when the cell is exposed to stress, such as high temperature, infection, and low oxygen.{{Cite journal |last1=Song |first1=Lin |last2=Zhang |first2=Jiaren |last3=Li |first3=Chao |last4=Yao |first4=Jun |last5=Jiang |first5=Chen |last6=Li |first6=Yun |last7=Liu |first7=Shikai |last8=Liu |first8=Zhanjiang |date=2014-12-26 |title=Genome-Wide Identification of Hsp40 Genes in Channel Catfish and Their Regulated Expression after Bacterial Infection |journal=PLOS ONE |language=en |volume=9 |issue=12 |pages=e115752 |doi=10.1371/journal.pone.0115752 |doi-access=free |pmid=25542027 |pmc=4277396 |issn=1932-6203}} Subfamily C, which contains DNAJC28, is defined only by the presence of a J domain, not by the location of that J domain or specific-amino-acid rich sequences like the other two subfamilies. Members of subfamily C generally only interact with a limited number of substrates or do not bind directly to a substrate at all. Some Hsp40 proteins, instead of working with Hsp70, assist polypeptide movement through the mitochondrial translocon.
The HPD tripeptide motif of the J domain interacts with key regions of Hsp70 proteins, specifically the Hsp70 linker and nucleotide-binding domain (NBD) crevice, which then restricts the Hsp70 protein in an optimal position for ATP hydrolysis. The J domain also interacts with the Hsp70 substrate-binding domain β (SBDβ) to make signal transmission more efficient from the SBD to the NBD, greatly increasing affinity between the Hsp70 ADP-bound equilibrium state and substrates.{{Cite journal |last1=De Los Rios |first1=Paolo |last2=Barducci |first2=Alessandro |date=2014-05-27 |editor-last=Chakraborty |editor-first=Arup K |title=Hsp70 chaperones are non-equilibrium machines that achieve ultra-affinity by energy consumption |url=https://elifesciences.org/articles/02218#abstract |journal=eLife |volume=3 |pages=e02218 |doi=10.7554/eLife.02218 |doi-access=free |pmid=24867638 |issn=2050-084X|pmc=4030575 }}
Clinical significance
The Hsp70/Hsp40 chaperone system works in proteostasis processes, which involves breaking down protein aggregations like a-synuclein which accumulates in Parkinson’s disease.{{Cite journal |last1=Liu |first1=Qinglian |last2=Liang |first2=Ce |last3=Zhou |first3=Lei |date=2019-10-07 |title=Structural and functional analysis of the Hsp70/Hsp40 chaperone system |journal=Protein Science |language=en |volume=29 |issue=2 |pages=378–390 |doi=10.1002/pro.3725 |issn=0961-8368 |pmc=6954727 |pmid=31509306}} A study found that damaging missense variants of DNAJC28 are likely related to sporadic late-onset Parkinson’s disease.{{Cite journal |last1=Zhang |first1=Kailin |last2=Pan |first2=Hongxu |last3=Zhao |first3=Yuwen |last4=Wang |first4=Yige |last5=Zeng |first5=Qian |last6=Zhou |first6=Xun |last7=He |first7=Runcheng |last8=Zhou |first8=Xiaoxia |last9=Xiang |first9=Yaqin |last10=Zhou |first10=Zhou |last11=Li |first11=Yu |last12=Xu |first12=Qian |last13=Sun |first13=Qiying |last14=Tan |first14=Jieqiong |last15=Yan |first15=Xinxiang |date=2022-09-01 |title=Genetic Analysis of HSP40/DNAJ Family Genes in Parkinson's Disease: a Large Case-Control Study |url=https://link.springer.com/article/10.1007/s12035-022-02920-5 |journal=Molecular Neurobiology |language=en |volume=59 |issue=9 |pages=5443–5451 |doi=10.1007/s12035-022-02920-5 |pmid=35715682 |issn=1559-1182}}
DNAJC28 was found to be excessively expressed in the hippocampus of the lupus-prone mice model MRL/lpr during TWEAK (TNF-like weak inducer of apoptosis) activation, which is associated with the neuropsychiatric impacts of lupus. That overexpression could either be damaging or a protective response to lupus.{{Cite journal |last1=Iacobas |first1=Dumitru A. |last2=Wen |first2=Jing |last3=Iacobas |first3=Sanda |last4=Putterman |first4=Chaim |last5=Schwartz |first5=Noa |date=2021-07-29 |title=TWEAKing the Hippocampus: The Effects of TWEAK on the Genomic Fabric of the Hippocampus in a Neuropsychiatric Lupus Mouse Model |journal=Genes |language=en |volume=12 |issue=8 |pages=1172 |doi=10.3390/genes12081172 |doi-access=free |issn=2073-4425 |pmc=8392718 |pmid=34440346}} Overexpression of other genes in the DnaJ family has been shown to contribute to neuroprotective effects in multiple neurodegenerative disease models.{{Cite journal |last1=Zarouchlioti |first1=Christina |last2=Parfitt |first2=David A. |last3=Li |first3=Wenwen |last4=Gittings |first4=Lauren M. |last5=Cheetham |first5=Michael E. |date=2018-01-19 |title=DNAJ Proteins in neurodegeneration: essential and protective factors |journal=Philosophical Transactions of the Royal Society B: Biological Sciences |language=en |volume=373 |issue=1738 |pages=20160534 |doi=10.1098/rstb.2016.0534 |issn=0962-8436 |pmc=5717533 |pmid=29203718}} Hsp70 are also known to be a crucial, suppressive part of the intrinsic apoptosis pathway.{{Cite journal |last1=Lanneau |first1=D. |last2=Brunet |first2=M. |last3=Frisan |first3=E. |last4=Solary |first4=E. |last5=Fontenay |first5=M. |last6=Garrido |first6=C. |date=2008 |title=Heat shock proteins: essential proteins for apoptosis regulation |journal=Journal of Cellular and Molecular Medicine |language=en |volume=12 |issue=3 |pages=743–761 |doi=10.1111/j.1582-4934.2008.00273.x |issn=1582-4934 |pmc=4401125 |pmid=18266962}}
No DNAJC28 SNPs were found to have clinical significance.{{Cite web |title=Home - SNP - NCBI |url=https://www.ncbi.nlm.nih.gov/snp/ |access-date=2024-12-05 |website=www.ncbi.nlm.nih.gov}}
References
{{reflist}}
External links
- {{UCSC gene info|DNAJC28}}
Further reading
{{refbegin | 2}}
- {{cite journal | vauthors=Kimura K, Wakamatsu A, Suzuki Y |title=Diversification of transcriptional modulation: large-scale identification and characterization of putative alternative promoters of human genes. |journal=Genome Res. |volume=16 |issue= 1 |pages= 55–65 |year= 2006 |pmid= 16344560 |doi= 10.1101/gr.4039406 | pmc=1356129 |display-authors=etal}}
- {{cite journal | vauthors=Gerhard DS, Wagner L, Feingold EA |title=The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). |journal=Genome Res. |volume=14 |issue= 10B |pages= 2121–7 |year= 2004 |pmid= 15489334 |doi= 10.1101/gr.2596504 | pmc=528928 |display-authors=etal}}
- {{cite journal | vauthors=Ota T, Suzuki Y, Nishikawa T |title=Complete sequencing and characterization of 21,243 full-length human cDNAs. |journal=Nat. Genet. |volume=36 |issue= 1 |pages= 40–5 |year= 2004 |pmid= 14702039 |doi= 10.1038/ng1285 |display-authors=etal|doi-access=free }}
- {{cite journal | vauthors=Strausberg RL, Feingold EA, Grouse LH |title=Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=99 |issue= 26 |pages= 16899–903 |year= 2003 |pmid= 12477932 |doi= 10.1073/pnas.242603899 | pmc=139241 |bibcode=2002PNAS...9916899M |display-authors=etal|doi-access=free }}
- {{cite journal | vauthors=Gardiner K, Slavov D, Bechtel L, Davisson M |title=Annotation of human chromosome 21 for relevance to Down syndrome: gene structure and expression analysis. |journal=Genomics |volume=79 |issue= 6 |pages= 833–43 |year= 2002 |pmid= 12036298 |doi= 10.1006/geno.2002.6782 }}
- {{cite journal | vauthors=Hattori M, Fujiyama A, Taylor TD |title=The DNA sequence of human chromosome 21. |journal=Nature |volume=405 |issue= 6784 |pages= 311–9 |year= 2000 |pmid= 10830953 |doi= 10.1038/35012518 |bibcode=2000Natur.405..311H |display-authors=etal|doi-access=free }}
- {{cite journal | vauthors=Suzuki Y, Yoshitomo-Nakagawa K, Maruyama K |title=Construction and characterization of a full length-enriched and a 5'-end-enriched cDNA library. |journal=Gene |volume=200 |issue= 1–2 |pages= 149–56 |year= 1997 |pmid= 9373149 |doi=10.1016/S0378-1119(97)00411-3 |display-authors=etal}}
- {{cite journal | vauthors=Maruyama K, Sugano S |title=Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides. |journal=Gene |volume=138 |issue= 1–2 |pages= 171–4 |year= 1994 |pmid= 8125298 |doi=10.1016/0378-1119(94)90802-8 }}
{{refend}}