Distyly
Distyly is a breeding system in plants that is characterized by two separate flower morphs, where individual plants produce flowers that have either long styles and short stamens (L-morph flowers) or short styles and long stamens (S-morph flowers).{{cite journal| vauthors = Lewis D |date=1942|title=The Physiology of Incompatibility in Plants. I. The Effect of Temperature|journal=Proceedings of the Royal Society of London. Series B, Biological Sciences|volume=131|issue=862|pages=13–26|doi=10.1098/rspb.1942.0015|jstor=82364|bibcode=1942RSPSB.131...13L|s2cid=84753102|issn=0080-4649|doi-access=}} However, distyly can refer to any plant that shows some degree of self-incompatibility and has two morphs if at least one of the following characteristics is true; there is a difference in style length, filament length, pollen size or shape, or the surface of the stigma.{{cite journal| vauthors = Muenchow G |date=August 1982|title=A loss-of-alleles model for the evolution of distyly |journal=Heredity|language=en|volume=49|issue=1|pages=81–93|doi=10.1038/hdy.1982.67|issn=0018-067X|doi-access=free|bibcode=1982Hered..49...81M }} Specifically these plants exhibit intra-morph self-incompatibility, flowers of the same style morph are incompatible.{{cite book |vauthors = Barrett SC, Cruzan MB | series = Advances in Cellular and Molecular Biology of Plants| chapter = Incompatibility in heterostylous plants|date=1994| title = Genetic control of self-incompatibility and reproductive development in flowering plants| volume = 2|pages=189–219|publisher=Springer Netherlands|isbn=978-90-481-4340-5|doi=10.1007/978-94-017-1669-7_10}} Distylous species that do not exhibit true self-incompatibility generally show a bias towards inter-morph crosses - meaning they exhibit higher success rates when reproducing with an individual of the opposite morph.{{cite journal | vauthors = Shao JW, Wang HF, Fang SP, Conti E, Chen YJ, Zhu HM | title = Intraspecific variation of self-incompatibility in the distylous plant Primula merrilliana | journal = AoB Plants | volume = 11 | issue = 3 | pages = plz030 | date = June 2019 | pmid = 32489575 | pmc = 6557196 | doi = 10.1093/aobpla/plz030 }}
Distyly is a type of heterostyly in which a plant demonstrates reciprocal herkogamy.
[[File:Distyly primula.jpg|thumb|312x312px|Example of distyly in Primula. A. L-morph (pin), B. S-morph (thrum)
1. petal. 2 sepal. 3 anther. 4 pistil. ]]
Background
The first scientific account of distyly can be found in Stephan Bejthe's Caroli book Clusii Atrebatis Rariorum aliquot stirpium {{Cite book |last=Bejthe |first=Stephan |url=https://www.biodiversitylibrary.org/bibliography/845 |title=Caroli Clusii Atrebatis Rariorum aliquot stirpium :per Pannoniam, Austriam, & vicinas quasdam provincias observatarum historia, quatuor libris expressa |date=1583 |publisher=Ex officina Christophori Plantini |location=Antverpiae |doi=10.5962/bhl.title.845}}. Bejthe describes the two floral morphs of Primula veris. Charles Darwin popularized distyly with his account of it in his book The Different Forms of Flowers on Plants of the Same Species.{{cite book |title=The different forms of flowers on plants of the same species by Charles Darwin ... |vauthors=Darwin C |publisher=D. Appleton and Co |year=1877 |oclc=894148387}} Darwin's book represents the first account of intramorphic self-incompatibility in distylous plants and focuses on garden experiments in which he looks at seed set of different distylous Primula. Darwin names the two floral morphs S- and L-morph, moving away from the vernacular names, Pin (for L-morph) and Thrum (for S-morph), which he states were initially assigned by florist.
Distylous species have been identified in 28 families of Angiosperm, likely evolving independently in each family. This means, the system has evolved at least 28 times, though it has been suggested the system has evolved multiple times within some families. Since distyly has evolved more than once, it is considered a case of convergent evolution.
Reciprocal herkogamy
Reciprocal herkogamy likely evolved to prevent the pollen of the same flower from landing on its own stigma. This in turn promotes outcrossing.
In a study of Primula veris it was found that pin flowers exhibit higher rates of self-pollination and capture more pollen than the thrum morph.{{cite journal| vauthors = Naiki A |date=2012|title=Heterostyly and the possibility of its breakdown by polyploidization|journal=Plant Species Biology|language=en|volume=27|issue=1 |pages=3–29|doi=10.1111/j.1442-1984.2011.00363.x|bibcode=2012PSBio..27....3N }} Different pollinators show varying levels of success while pollinating the different Primula morphs, the head or proboscis length of a pollinator is positively correlated to the uptake of pollen from long styled flowers and negatively correlated for pollen uptake on short styled flowers. The opposite is true for pollinators with smaller heads, such as bees, they uptake more pollen from short styled morphs than long styled ones.{{cite journal| vauthors = Deschepper P, Brys R, Jacquemyn H |date=2018-03-01|title=The impact of flower morphology and pollinator community composition on pollen transfer in the distylous Primula veris|journal=Botanical Journal of the Linnean Society|volume=186|issue=3|pages=414–424|doi=10.1093/botlinnean/box097|issn=0024-4074}} The differentiation in pollinators allows the plants to reduce levels of intra-morph pollination.
Models of evolution
There are two main hypothetical models for the order in which the traits of distyly evolved, the 'selfing avoidance model' {{cite journal| vauthors = Charlesworth D, Charlesworth B |date=October 1979|title=A Model for the Evolution of Distyly |journal=The American Naturalist|language=en|volume=114|issue=4|pages=467–498|doi=10.1086/283496|bibcode=1979ANat..114..467C |s2cid=85285185|issn=0003-0147}} and the 'pollen transfer model'.{{cite book | vauthors = Lloyd DG, Webb CJ | chapter = The Selection of Heterostyly|date=1992 |title = Evolution and Function of Heterostyly| series = Monographs on Theoretical and Applied Genetics|volume=15|pages=179–207| veditors = Barrett SC |place=Berlin, Heidelberg|publisher=Springer Berlin Heidelberg|doi=10.1007/978-3-642-86656-2_7|isbn=978-3-642-86658-6 }}
- The selfing avoidance model suggests self-incompatibility (SI) evolved first, followed by the morphological difference. It was suggested that the male component of SI would evolve first via a recessive mutation, followed by female characteristics via a dominant mutation, and finally male morphological differences would evolve via a third mutation.
- The pollen transfer model argues that morphological differences evolved first, and if a species is facing inbreeding depression, it may evolve SI. This model can be used to explain the presence of reciprocal herkogamy in self-compatible species.
Genetic control of distyly
A supergene, called the self-incompatibility (or S-) locus, is responsible for the occurrence of distyly.{{cite journal | vauthors = Barrett SC | title = 'A most complex marriage arrangement': recent advances on heterostyly and unresolved questions | journal = The New Phytologist | volume = 224 | issue = 3 | pages = 1051–1067 | date = November 2019 | pmid = 31631362 | doi = 10.1111/nph.16026 | doi-access = free | bibcode = 2019NewPh.224.1051B }} The S-locus is composed of three tightly linked genes (S-genes) which segregate as a single unit.
Traditionally it was hypothesized that one S-gene controls all female aspects of distyly, one gene that controls the male morphological aspects, and one gene that determines the male mating type.{{cite journal | vauthors = Kappel C, Huu CN, Lenhard M | title = A short story gets longer: recent insights into the molecular basis of heterostyly | journal = Journal of Experimental Botany | volume = 68 | issue = 21–22 | pages = 5719–5730 | date = December 2017 | pmid = 29099983 | doi = 10.1093/jxb/erx387 | doi-access = free }} While this hypothesis appears to be true in Turnera, it is not true in Primula {{cite journal | vauthors = Li J, Cocker JM, Wright J, Webster MA, McMullan M, Dyer S, Swarbreck D, Caccamo M, Oosterhout CV, Gilmartin PM | display-authors = 6 | title = Genetic architecture and evolution of the S locus supergene in Primula vulgaris | journal = Nature Plants | volume = 2 | issue = 12 | pages = 16188 | date = December 2016 | pmid = 27909301 | doi = 10.1038/nplants.2016.188 | bibcode = 2016NatPl...216188L | s2cid = 205458474 | url = https://hull-repository.worktribe.com/output/3712561 }} nor Linum.{{Cite journal |last1=Gutiérrez-Valencia |first1=Juanita |last2=Fracassetti |first2=Marco |last3=Berdan |first3=Emma L. |last4=Bunikis |first4=Ignas |last5=Soler |first5=Lucile |last6=Dainat |first6=Jacques |last7=Kutschera |first7=Verena E. |last8=Losvik |first8=Aleksandra |last9=Désamoré |first9=Aurélie |last10=Hughes |first10=P. William |last11=Foroozani |first11=Alireza |last12=Laenen |first12=Benjamin |last13=Pesquet |first13=Edouard |last14=Abdelaziz |first14=Mohamed |last15=Pettersson |first15=Olga Vinnere |date=2022 |title=Genomic analyses of the Linum distyly supergene reveal convergent evolution at the molecular level |journal=Current Biology |language=en |volume=32 |issue=20 |pages=4360–4371.e6 |doi=10.1016/j.cub.2022.08.042|pmid=36087578 |s2cid=249242025 |doi-access=free |bibcode=2022CBio...32E4360G |hdl=10481/78952 |hdl-access=free }} The S-morph is hemizygous for the S-locus and the L-morph does not have an allelic counterpart . The hemizygotic nature of the S-locus has been shown in Primula , Gelsemium,{{Cite journal |last1=Zhao |first1=Zhongtao |last2=Zhang |first2=Yu |last3=Shi |first3=Miaomiao |last4=Liu |first4=Zhaoying |last5=Xu |first5=Yuanqing |last6=Luo |first6=Zhonglai |last7=Yuan |first7=Shuai |last8=Tu |first8=Tieyao |last9=Sun |first9=Zhiliang |last10=Zhang |first10=Dianxiang |last11=Barrett |first11=Spencer C. H. |date=2022-11-22 |title=Genomic evidence supports the genetic convergence of a supergene controlling the distylous floral syndrome |url=https://onlinelibrary.wiley.com/doi/10.1111/nph.18540 |journal=New Phytologist |volume=237 |issue=2 |language=en |pages=601–614 |doi=10.1111/nph.18540 |pmid=36239093 |s2cid=252897518 |issn=0028-646X|url-access=subscription }} Linum {{cite journal | vauthors = Ushijima K, Nakano R, Bando M, Shigezane Y, Ikeda K, Namba Y, Kume S, Kitabata T, Mori H, Kubo Y | display-authors = 6 | title = Isolation of the floral morph-related genes in heterostylous flax (Linum grandiflorum): the genetic polymorphism and the transcriptional and post-transcriptional regulations of the S locus | journal = The Plant Journal | volume = 69 | issue = 2 | pages = 317–31 | date = January 2012 | pmid = 21923744 | doi = 10.1111/j.1365-313X.2011.04792.x | doi-access = }}, Fagopyrum {{cite journal | vauthors = Yasui Y, Mori M, Aii J, Abe T, Matsumoto D, Sato S, Hayashi Y, Ohnishi O, Ota T | display-authors = 6 | title = S-LOCUS EARLY FLOWERING 3 is exclusively present in the genomes of short-styled buckwheat plants that exhibit heteromorphic self-incompatibility | journal = PLOS ONE | volume = 7 | issue = 2 | pages = e31264 | date = 2012-02-01 | pmid = 22312442 | pmc = 3270035 | doi = 10.1371/journal.pone.0031264 | bibcode = 2012PLoSO...731264Y | doi-access = free }}{{Cite journal |last1=Fawcett |first1=Jeffrey A. |last2=Takeshima |first2=Ryoma |last3=Kikuchi |first3=Shinji |last4=Yazaki |first4=Euki |last5=Katsube-Tanaka |first5=Tomoyuki |last6=Dong |first6=Yumei |last7=Li |first7=Meifang |last8=Hunt |first8=Harriet V. |last9=Jones |first9=Martin K. |last10=Lister |first10=Diane L. |last11=Ohsako |first11=Takanori |last12=Ogiso-Tanaka |first12=Eri |last13=Fujii |first13=Kenichiro |last14=Hara |first14=Takashi |last15=Matsui |first15=Katsuhiro |year=2023 |title=Genome sequencing reveals the genetic architecture of heterostyly and domestication history of common buckwheat |url=https://www.nature.com/articles/s41477-023-01474-1 |journal=Nature Plants |language=en |volume=9 |issue=8 |pages=1236–1251 |doi=10.1038/s41477-023-01474-1 |pmid=37563460 |bibcode=2023NatPl...9.1236F |issn=2055-0278|url-access=subscription }}, Turnera,{{cite journal | vauthors = Shore JS, Hamam HJ, Chafe PD, Labonne JD, Henning PM, McCubbin AG | title = The long and short of the S-locus in Turnera (Passifloraceae) | journal = The New Phytologist | volume = 224 | issue = 3 | pages = 1316–1329 | date = November 2019 | pmid = 31144315 | doi = 10.1111/nph.15970 | doi-access = free | bibcode = 2019NewPh.224.1316S }} Nymphoides{{Cite journal |last1=Yang |first1=Jingshan |last2=Xue |first2=Haoran |last3=Li |first3=Zhizhong |last4=Zhang |first4=Yue |last5=Shi |first5=Tao |last6=He |first6=Xiangyan |last7=Barrett |first7=Spencer C. H. |last8=Wang |first8=Qingfeng |last9=Chen |first9=Jinming |date=2023-09-17 |title=Haplotype-resolved genome assembly provides insights into the evolution of S -locus supergene in distylous Nymphoides indica |journal=New Phytologist |volume=240 |issue=5 |pages=2058–2071 |language=en |doi=10.1111/nph.19264 |issn=0028-646X|doi-access=free |pmid=37717220 |bibcode=2023NewPh.240.2058Y }} and Chrysojasminum.{{Cite journal |last1=Raimondeau |first1=Pauline |last2=Ksouda |first2=Sayam |last3=Marande |first3=William |last4=Fuchs |first4=Anne-Laure |last5=Gryta |first5=Hervé |last6=Theron |first6=Anthony |last7=Puyoou |first7=Aurore |last8=Dupin |first8=Julia |last9=Cheptou |first9=Pierre-Olivier |last10=Vautrin |first10=Sonia |last11=Valière |first11=Sophie |last12=Manzi |first12=Sophie |last13=Baali-Cherif |first13=Djamel |last14=Chave |first14=Jérôme |last15=Christin |first15=Pascal-Antoine |date=May 2024 |title=A hemizygous supergene controls homomorphic and heteromorphic self-incompatibility systems in Oleaceae |url=https://doi.org/10.1016/j.cub.2024.03.029 |journal=Current Biology |volume=34 |issue=9 |pages=1977–1986.e8 |doi=10.1016/j.cub.2024.03.029 |pmid=38626764 |bibcode=2024CBio...34.1977R |issn=0960-9822}}
The presence of the S-locus results in changes to gene expression between the two floral morphs, as has been demonstrated using transcriptomic analyses of Lithospermum multiflorum {{cite journal | vauthors = Cohen JI | title = De novo Sequencing and Comparative Transcriptomics of Floral Development of the Distylous Species Lithospermum multiflorum | journal = Frontiers in Plant Science | volume = 7 | pages = 1934 | date = 2016-12-23 | pmid = 28066486 | pmc = 5179544 | doi = 10.3389/fpls.2016.01934 | doi-access = free }} , Primula veris,{{cite journal |vauthors=Nowak MD, Russo G, Schlapbach R, Huu CN, Lenhard M, Conti E |date=January 2015 |title=The draft genome of Primula veris yields insights into the molecular basis of heterostyly |journal=Genome Biology |volume=16 |issue=1 |pages=12 |doi=10.1186/s13059-014-0567-z |pmc=4305239 |pmid=25651398 |doi-access=free }} Primula oreodoxa {{cite journal | vauthors = Zhao Z, Luo Z, Yuan S, Mei L, Zhang D | title = Global transcriptome and gene co-expression network analyses on the development of distyly in Primula oreodoxa | journal = Heredity | volume = 123 | issue = 6 | pages = 784–794 | date = December 2019 | pmid = 31308492 | pmc = 6834660 | doi = 10.1038/s41437-019-0250-y | bibcode = 2019Hered.123..784Z }}, Primula vulgaris {{cite journal | vauthors = Burrows B, McCubbin A | title = Examination of S-Locus Regulated Differential Expression in Primula vulgaris Floral Development | journal = Plants | volume = 7 | issue = 2 | pages = 38 | date = May 2018 | pmid = 29724049 | pmc = 6027539 | doi = 10.3390/plants7020038 | doi-access = free | bibcode = 2018Plnts...7...38B }} and Turnera subulata{{cite journal |vauthors=Henning PM, Shore JS, McCubbin AG |date=June 2020 |title=Transcriptome and Network Analyses of Heterostyly in Turnera subulata Provide Mechanistic Insights: Are S-Loci a Red-Light for Pistil Elongation? |journal=Plants |volume=9 |issue=6 |pages=713 |doi=10.3390/plants9060713 |pmc=7356734 |pmid=32503265 |doi-access=free|bibcode=2020Plnts...9..713H }}, and Forsythia suspensa.{{Cite journal |last1=Song |first1=Yun |last2=Li |first2=Zheng |last3=Du |first3=Xiaorong |last4=Li |first4=Aoxuan |last5=Cao |first5=Yaping |last6=Jia |first6=Mengjun |last7=Niu |first7=Yanbing |last8=Qiao |first8=Yonggang |date=2024-05-06 |title=Study on the brassinosteroids modulated regulation of the style growth in Forsythia suspensa (Thunb.) Vahl |url=https://link.springer.com/10.1007/s10725-024-01149-7 |journal=Plant Growth Regulation |volume=103 |issue=3 |pages=763–774 |language=en |doi=10.1007/s10725-024-01149-7 |bibcode=2024PGroR.103..763S |issn=0167-6903|url-access=subscription }}
= The ''S''-locus of ''Chrysojasminum'' =
= The ''S''-locus of ''Fagopyrum'' =
= The ''S-''locus of ''Gelsemium'' =
In Gelsemium, the S-locus is composed of four genes, GeCYP, GeFRS6, and GeGA3OX are hemizygous and TAF2 appears to be allelic with a truncated copy in the L-morph. GeCYP appears to share a last common ancestor (or ortholog) with the Primula S-gene CYPT. It is currently hypothesized that the for S-genes in Gelsemium were inherited as a group rather than separately. This is the only known case of the S-genes being inherited as a group rather than individually.
= The ''S''-locus of ''Linum'' =
In Linum the S-locus is composed of nine genes, two are LtTSS1 and LtWDR-44 the other seven are unnamed and are of unknown function. LtTSS1 is hypothesized to regulate style length in the S-morph. Synonymous substitution analysis of three of the S-genes suggest the S-locus in Linum evolved in a step by step manner, though only three of the nine genes were analyzed.
= The ''S''-locus of ''Nymphoides'' =
The S-locus of Nymphoides contains three genes NinS1, NinKHZ2, and NinBAS1. NinBAS1 is only expressed in the style and is hypothetical involved in regulation of brassinosteroids, NinS1 is only expressed in the stamen, NinKHZ2 is expressed in both stamen and style. Similar to other S-loci, the Nymphoides S-locus appears to have evolved via stepwise duplication events.
= The ''S''-locus of ''Primula'' =
In Primula the S-locus is composed of five genes, CYPT(or CYP734A50), GLOT (or GLOBOSA2), KFBT, PUMT, and CCMT. The supergene evolved in a step-by-step manner, meaning each S-gene duplicated and move to the pre-S-locus independently of the others.{{Cite journal |last1=Huu |first1=Cuong Nguyen |last2=Keller |first2=Barbara |last3=Conti |first3=Elena |last4=Kappel |first4=Christian |last5=Lenhard |first5=Michael |date=2020-09-15 |title=Supergene evolution via stepwise duplications and neofunctionalization of a floral-organ identity gene |journal=Proceedings of the National Academy of Sciences |language=en |volume=117 |issue=37 |pages=23148–23157 |doi=10.1073/pnas.2006296117 |pmid=32868445 |pmc=7502755 |issn=0027-8424|doi-access=free |bibcode=2020PNAS..11723148H }}{{Cite journal |last1=Potente |first1=Giacomo |last2=Léveillé-Bourret |first2=Étienne |last3=Yousefi |first3=Narjes |last4=Choudhury |first4=Rimjhim Roy |last5=Keller |first5=Barbara |last6=Diop |first6=Seydina Issa |last7=Duijsings |first7=Daniël |last8=Pirovano |first8=Walter |last9=Lenhard |first9=Michael |last10=Szövényi |first10=Péter |last11=Conti |first11=Elena |date=2022-02-03 |editor-last=de Meaux |editor-first=Juliette |title=Comparative Genomics Elucidates the Origin of a Supergene Controlling Floral Heteromorphism |url=https://academic.oup.com/mbe/article/doi/10.1093/molbev/msac035/6526404 |journal=Molecular Biology and Evolution |language=en |volume=39 |issue=2 |pages=msac035 |doi=10.1093/molbev/msac035 |issn=0737-4038 |pmc=8859637 |pmid=35143659}} Synonymous substitution analysis of the S-genes suggest the oldest S-gene in Primula is likely KFBT which likely duplicated about 104 million years ago, followed by CYPT(42.7 MYA),GLOT (37.4 MYA), CCMT(10.3 MYA). It is unknown when PUMT evolved as it does not have a paralog within the Primula genome.
Of the five S-genes, two have been characterized. CYPT, a cytochrome P450 family member, is the female morphology{{Cite journal |last1=Huu |first1=Cuong Nguyen |last2=Kappel |first2=Christian |last3=Keller |first3=Barbara |last4=Sicard |first4=Adrien |last5=Takebayashi |first5=Yumiko |last6=Breuninger |first6=Holger |last7=Nowak |first7=Michael D |last8=Bäurle |first8=Isabel |last9=Himmelbach |first9=Axel |last10=Burkart |first10=Michael |last11=Ebbing-Lohaus |first11=Thomas |last12=Sakakibara |first12=Hitoshi |last13=Altschmied |first13=Lothar |last14=Conti |first14=Elena |last15=Lenhard |first15=Michael |date=2016-09-06 |editor-last=Hardtke |editor-first=Christian S |title=Presence versus absence of CYP734A50 underlies the style-length dimorphism in primroses |journal=eLife |volume=5 |pages=e17956 |doi=10.7554/eLife.17956 |issn=2050-084X |pmc=5012859 |pmid=27596932 |doi-access=free }} and it is the female self-incompatibility gene,{{Cite journal |last1=Huu |first1=Cuong Nguyen |last2=Plaschil |first2=Sylvia |last3=Himmelbach |first3=Axel |last4=Kappel |first4=Christian |last5=Lenhard |first5=Michael |date=2022 |title=Female self-incompatibility type in heterostylous Primula is determined by the brassinosteroid-inactivating cytochrome P450 CYP734A50 |journal=Current Biology |language=en |volume=32 |issue=3 |pages=671–676.e5 |doi=10.1016/j.cub.2021.11.046|pmid=34906354 |s2cid=245128230 |doi-access=free |bibcode=2022CBio...32E.671H }} meaning it promotes rejection of self pollen. CYPT is likely producing these phenotypes via inactivation of brassinosteroids. Inactivation of brassinosteroids in the S-morph by CYPT results in repression of cell elongation in the style by repressing expression of PIN5, ultimately producing the short pistil phenotype.{{Cite journal |last1=Liu |first1=Ying |last2=Si |first2=Weijia |last3=Fu |first3=Sitong |last4=Wang |first4=Jia |last5=Cheng |first5=Tangren |last6=Zhang |first6=Qixiang |last7=Pan |first7=Huitang |date=2024-01-08 |title=PfPIN5 promotes style elongation by regulating cell length in Primula forbesii French |url=https://doi.org/10.1093/aob/mcae004 |journal=Annals of Botany |volume=133 |issue=3 |pages=473–482 |doi=10.1093/aob/mcae004 |pmid=38190350 |pmc=11006536 |issn=0305-7364}} GLOT , a MADS-BOX family member,{{Cite journal |last1=Burrows |first1=Benjamin A. |last2=McCubbin |first2=Andrew G. |date=2017 |title=Sequencing the genomic regions flanking S-linked PvGLO sequences confirms the presence of two GLO loci, one of which lies adjacent to the style-length determinant gene CYP734A50 |url=http://link.springer.com/10.1007/s00497-017-0299-9 |journal=Plant Reproduction |language=en |volume=30 |issue=1 |pages=53–67 |doi=10.1007/s00497-017-0299-9 |pmid=28229234 |bibcode=2017PlanR..30...53B |s2cid=22910136 |issn=2194-7953|url-access=subscription }} is the male morphology gene as it promotes corolla tube growth under the stamen. It is unknown how the other three S-genes are contributing to distyly in Primula.
= The ''S''-locus of ''Turnera'' =
In Turnera the S-locus is composed of three genes, BAHD, SPH1, and YUC6. BAHD is likely an acyltransferase involved in inactivation of brassinosteroids;{{Cite journal |last1=Matzke |first1=Courtney M. |last2=Shore |first2=Joel S. |last3=Neff |first3=Michael M. |last4=McCubbin |first4=Andrew G. |date=2020-11-13 |title=The Turnera Style S-Locus Gene TsBAHD Possesses Brassinosteroid-Inactivating Activity When Expressed in Arabidopsis thaliana |journal=Plants |language=en |volume=9 |issue=11 |pages=1566 |doi=10.3390/plants9111566 |issn=2223-7747 |pmc=7697239 |pmid=33202834|doi-access=free |bibcode=2020Plnts...9.1566M }} it is both the female morphology and female self-incompatibility gene.{{Cite journal |last1=Matzke |first1=Courtney M. |last2=Hamam |first2=Hasan J. |last3=Henning |first3=Paige M. |last4=Dougherty |first4=Kyra |last5=Shore |first5=Joel S. |last6=Neff |first6=Michael M. |last7=McCubbin |first7=Andrew G. |date=2021-09-30 |title=Pistil Mating Type and Morphology Are Mediated by the Brassinosteroid Inactivating Activity of the S-Locus Gene BAHD in Heterostylous Turnera Species |journal=International Journal of Molecular Sciences |language=en |volume=22 |issue=19 |pages=10603 |doi=10.3390/ijms221910603 |issn=1422-0067 |pmc=8509066 |pmid=34638969|doi-access=free }} YUC6 is likely involved in auxin biosynthesis based on homology; it is the male self-incompatibility gene and establishes pollen size dimorphisms.{{Cite journal |last1=Henning |first1=Paige M. |last2=Shore |first2=Joel S. |last3=McCubbin |first3=Andrew G. |date=2022-10-08 |title=The S-Gene YUC6 Pleiotropically Determines Male Mating Type and Pollen Size in Heterostylous Turnera (Passifloraceae): A Novel Neofunctionalization of the YUCCA Gene Family |journal=Plants |language=en |volume=11 |issue=19 |pages=2640 |doi=10.3390/plants11192640 |issn=2223-7747 |pmc=9572539 |pmid=36235506|doi-access=free |bibcode=2022Plnts..11.2640H }} SPH1 is likely involved in filament elongation based on short filament mutant analysis.
List of families with distylous species
{{columns-list|colwidth=25em|
- Acanthaceae
- Amaryllidaceae
- Boraginaceae
- Connaraceae
- Erythroxylaceae
- Fabaceae
- Gelsemiaceae
- Gentianaceae
- Hypericaceae
- Iridaceae
- Lamiaceae
- Linaceae
- Lythraceae
- Malvaceae
- Menyanthaceae
- Oleaceae
- Oxalidaceae
- Passifloraceae
- Plumbaginaceae
- Polemoniaceae
- Polygonaceae
- Pontederiaceae
- Primulaceae
- Rubiaceae
- Santalaceae
- Saxifragaceae
- Schoepfiaceae
- Thymelaeaceae
}}