Dixon elliptic functions
File:Dixon cm, sm functions.png
In mathematics, the Dixon elliptic functions sm and cm are two elliptic functions (doubly periodic meromorphic functions on the complex plane) that map from each regular hexagon in a hexagonal tiling to the whole complex plane. Because these functions satisfy the identity , as real functions they parametrize the cubic Fermat curve , just as the trigonometric functions sine and cosine parametrize the unit circle .
They were named sm and cm by Alfred Dixon in 1890, by analogy to the trigonometric functions sine and cosine and the Jacobi elliptic functions sn and cn; Göran Dillner described them earlier in 1873.Dixon (1890), Dillner (1873). Dillner uses the symbols
Definition
The functions sm and cm can be defined as the solutions to the initial value problem:Dixon (1890), Van Fossen Conrad & Flajolet (2005), Robinson (2019).
:
Or as the inverse of the Schwarz–Christoffel mapping from the complex unit disk to an equilateral triangle, the Abelian integral:The mapping for a general regular polygon is described in Schwarz (1869).
:
which can also be expressed using the hypergeometric function:van Fossen Conrad & Flajolet (2005) p. 6.
:
Parametrization of the cubic Fermat curve
File:Dixon cm, sm on the cubic Fermat curve.png
Both sm and cm have a period along the real axis of with the beta function and the gamma function:Dillner (1873) calls the period . Dixon (1890) calls it ; Adams (1925) and Robinson (2019) each call it . Van Fossen Conrad & Flajolet (2005) call it . Also see OEIS [https://oeis.org/A197374 A197374].
:
They satisfy the identity . The parametric function parametrizes the cubic Fermat curve with representing the signed area lying between the segment from the origin to , the segment from the origin to , and the Fermat curve, analogous to the relationship between the argument of the trigonometric functions and the area of a sector of the unit circle.Dixon (1890), Van Fossen Conrad & Flajolet (2005) To see why, apply Green's theorem:
:
Notice that the area between the and can be broken into three pieces, each of area :
:
\tfrac12\pi_3 &= \int_{-\infty}^\infty \bigl((1 - x^3)^{1/3} + x\bigr)\mathop{dx} \\[8mu]
\tfrac16\pi_3 &= \int_{-\infty}^0 \bigl((1 - x^3)^{1/3} + x\bigr)\mathop{dx} = \int_0^1 (1 - x^3)^{1/3} \mathop{dx}.
\end{aligned}
Symmetries
File:Sm in the complex plane.svg of goes from to , the colors go through cyan, blue (), magneta, red (), orange, yellow (), green, and back to cyan ().]]
The function has zeros at the complex-valued points for any integers and , where is a cube root of unity, (that is, is an Eisenstein integer). The function has zeros at the complex-valued points . Both functions have poles at the complex-valued points .
On the real line, , which is analogous to .
= Fundamental reflections, rotations, and translations =
Both {{math|cm}} and {{math|sm}} commute with complex conjugation,
:
\operatorname{cm} \bar{z} &= \overline{\operatorname{cm} z}, \\
\operatorname{sm} \bar{z} &= \overline{\operatorname{sm} z}.
\end{align}
Analogous to the parity of trigonometric functions (cosine an even function and sine an odd function), the Dixon function {{math|cm}} is invariant under turn rotations of the complex plane, and turn rotations of the domain of {{math|sm}} cause turn rotations of the codomain:
:
\operatorname{cm} \omega z &= \operatorname{cm} z = \operatorname{cm} \omega^2 z, \\
\operatorname{sm} \omega z &= \omega \operatorname{sm} z = \omega^2 \operatorname{sm} \omega^2 z.
\end{align}
Each Dixon elliptic function is invariant under translations by the Eisenstein integers scaled by
:
\operatorname{cm}\bigl(z + \pi_3(a + b\omega)\bigr) = \operatorname{cm} z, \\
\operatorname{sm}\bigl(z + \pi_3(a + b\omega)\bigr) = \operatorname{sm} z.
\end{align}
Negation of each of {{math|cm}} and {{math|sm}} is equivalent to a translation of the other,
:
\operatorname{cm}(-z) &= \frac{1}{\operatorname{cm} z} = \operatorname{sm} \bigl(z + \tfrac13\pi_3\bigr), \\
\operatorname{sm}(-z) &= -\frac{\operatorname{sm} z}{\operatorname{cm} z} = \frac{1}{\operatorname{sm} \bigl(z - \tfrac13\pi_3\bigr)} = \operatorname{cm} \bigl(z + \tfrac13\pi_3\bigr).
\end{align}
For translations by give
:
\operatorname{cm}\bigl(z+\tfrac13\omega^n\pi_3\bigr) &= \omega^{2n}\frac{-\operatorname{sm} z}{\operatorname{cm} z}, \\
\operatorname{sm}\bigl(z+\tfrac13\omega^n\pi_3\bigr) &= \omega^n\frac{1}{\operatorname{cm} z}.
\end{align}
= Specific values =
class="wikitable"
|+ ! ! ! |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
== More specific values ==
class="wikitable mw-collapsible mw-collapsed"
|+ ! ! ! |
| {1 + \sqrt{3} + \sqrt{2\sqrt{3}}} {2} | { -1 - \sqrt{3 + 2\sqrt{3}}} { \sqrt[3]{4}} |
| | |
| | |
| { -1 + \sqrt{3} + \sqrt{2\sqrt{3}}} {2\sqrt[3]{2}} | { -1 + \sqrt{3} - \sqrt{2\sqrt{3}}} {2\sqrt[3]{2}} |
| { -1 + \sqrt{3 + 2\sqrt{3}}} { \sqrt[3]{4}} | {1 + \sqrt{3} - \sqrt{2\sqrt{3}}} {2} |
| | |
| | |
| {1 + \sqrt{3} - \sqrt{2\sqrt{3}}} {2} | { -1 + \sqrt{3 + 2\sqrt{3}}} { \sqrt[3]{4}} |
| { -1 + \sqrt{3} - \sqrt{2\sqrt{3}}} {2\sqrt[3]{2}} | { -1 + \sqrt{3} + \sqrt{2\sqrt{3}}} {2\sqrt[3]{2}} |
| | |
| | |
| { -1 - \sqrt{3 + 2\sqrt{3}}} { \sqrt[3]{4}} | {1 + \sqrt{3} + \sqrt{2\sqrt{3}}} {2} |
Sum and difference identities
The Dixon elliptic functions satisfy the argument sum and difference identities:Dixon (1890), Adams (1925)
:
\operatorname{cm}( u + v ) &= \frac
{ \operatorname{sm} u \,\operatorname{cm} u - \operatorname{sm} v \,\operatorname{cm} v }
{ \operatorname{sm} u \,\operatorname{cm}^2 v - \operatorname{cm}^2 u \,\operatorname{sm} v }
\\[8mu]
\operatorname{cm}( u - v ) &= \frac
{ \operatorname{cm}^2 u \,\operatorname{cm} v - \operatorname{sm} u \,\operatorname{sm}^2 v }
{ \operatorname{cm} u \,\operatorname{cm}^2 v - \operatorname{sm}^2 u \,\operatorname{sm} v }
\\[8mu]
\operatorname{sm}( u + v ) &= \frac
{ \operatorname{sm}^2 u \,\operatorname{cm} v - \operatorname{cm} u \,\operatorname{sm}^2 v }
{ \operatorname{sm} u \,\operatorname{cm}^2 v - \operatorname{cm}^2 u \,\operatorname{sm} v }
\\[8mu]
\operatorname{sm}( u - v ) &= \frac
{ \operatorname{sm} u \,\operatorname{cm} u - \operatorname{sm} v \,\operatorname{cm} v }
{ \operatorname{cm} u \,\operatorname{cm}^2 v - \operatorname{sm}^2 u \,\operatorname{sm} v }
\end{aligned}
These formulas can be used to compute the complex-valued functions in real components:{{citation needed|date=January 2023}}
:
\operatorname{cm}(x + \omega y)
&= \frac
{ \operatorname{sm} x \,\operatorname{cm} x - \omega\,\operatorname{sm} y \,\operatorname{cm} y }
{ \operatorname{sm} x \,\operatorname{cm}^2 y - \omega\,\operatorname{cm}^2 x \,\operatorname{sm} y }\\[4mu]
&= \frac{ \operatorname{cm} x (\operatorname{sm}^2 x \,\operatorname{cm}^2 y + \operatorname{cm} x \,\operatorname{sm}^2 y \,\operatorname{cm} y + \operatorname{sm} x \,\operatorname{cm}^2 x \,\operatorname{sm} y) }{\operatorname{sm}^2 x \,\operatorname{cm}^4 y + \operatorname{sm} x \,\operatorname{cm}^2 x \,\operatorname{sm} y \,\operatorname{cm}^2 y + \operatorname{cm}^4 x \,\operatorname{sm}^2 y} \\[4mu]
&\qquad+ \omega \frac{\operatorname{sm} x \,\operatorname{sm} y (\operatorname{cm}^3 x - \operatorname{cm}^3 y )}{\operatorname{sm}^2 x \,\operatorname{cm}^4 y + \operatorname{sm} x \,\operatorname{cm}^2 x \,\operatorname{sm} y \,\operatorname{cm}^2 y + \operatorname{cm}^4 x \,\operatorname{sm}^2 y}
\\[8mu]
\operatorname{sm}(x + \omega y)
&= \frac{ \operatorname{sm}^2 x \,\operatorname{cm} y - \omega^2\,\operatorname{cm} x \,\operatorname{sm}^2 y }
{ \operatorname{sm} x \,\operatorname{cm}^2 y - \omega\,\operatorname{cm}^2 x \,\operatorname{sm} y } \\[4mu]
&= \frac{ \operatorname{sm} x (\operatorname{sm} x \,\operatorname{cm} x \,\operatorname{cm}^2 y + \operatorname{sm} y\,\operatorname{cm}^3 x + \operatorname{sm} y\,\operatorname{cm}^3 y ) }{\operatorname{sm}^2 x \,\operatorname{cm}^4 y + \operatorname{sm} x \,\operatorname{cm}^2 x \,\operatorname{sm} y \,\operatorname{cm}^2 y + \operatorname{cm}^4 x \,\operatorname{sm}^2 y} \\[4mu]
&\qquad+ \omega \frac{ \operatorname{sm} y (\operatorname{sm} x \,\operatorname{cm}^3 x + \operatorname{sm} x \,\operatorname{cm}^3 y + \operatorname{cm}^2 x \,\operatorname{sm} y \,\operatorname{cm} y) }{\operatorname{sm}^2 x \,\operatorname{cm}^4 y + \operatorname{sm} x \,\operatorname{cm}^2 x \,\operatorname{sm} y \,\operatorname{cm}^2 y + \operatorname{cm}^4 x \,\operatorname{sm}^2 y}
\end{aligned}
Multiple-argument identities
Argument duplication and triplication identities can be derived from the sum identity:Dixon (1890), [https://gdz.sub.uni-goettingen.de/id/PPN600494829_0024?tify=%7B%22pages%22%3A%5B197%5D%7D p. 185–186]. Robinson (2019).
:
\operatorname{cm} 2u &= \frac
{ \operatorname{cm}^3 u - \operatorname{sm}^3 u}
{ \operatorname{cm} u (1 + \operatorname{sm}^3 u) } = \frac
{ 2\operatorname{cm}^3 u - 1}
{ 2\operatorname{cm} u - \operatorname{cm}^4 u }, \\[5mu]
\operatorname{sm} 2u &= \frac
{ \operatorname{sm} u (1 + \operatorname{cm}^3 u)}
{ \operatorname{cm} u (1 + \operatorname{sm}^3 u) } = \frac
{ 2\operatorname{sm} u - \operatorname{sm}^4 u}
{ 2\operatorname{cm} u - \operatorname{cm}^4 u }, \\[5mu]
\operatorname{cm} 3u &= \frac
{ \operatorname{cm}^9 u - 6\operatorname{cm}^6 u + 3\operatorname{cm}^3 u + 1}
{ \operatorname{cm}^9 u + 3\operatorname{cm}^6 u - 6\operatorname{cm}^3 u + 1}, \\[5mu]
\operatorname{sm} 3u &= \frac
{ 3\operatorname{sm}u\, \operatorname{cm}u (\operatorname{sm}^3u\, \operatorname{cm}^3u - 1)}
{ \operatorname{cm}^9 u + 3\operatorname{cm}^6 u - 6\operatorname{cm}^3 u + 1}.
\end{align}
Specific value identities
The function satisfies the identities
\operatorname{cm}\tfrac29\pi_3 &= -\operatorname{cm}\tfrac19 \pi_3\, \operatorname{cm}\tfrac49\pi_3, \\[5mu]
\operatorname{cm}\tfrac14\pi_3 &= \operatorname{cl}\tfrac13\varpi,
\end{align}
where is lemniscate cosine and is Lemniscate constant.{{citation needed|date=June 2023}}
Power series
The {{math|cm}} and {{math|sm}} functions can be approximated for by the Taylor series
:
\operatorname{cm} z &= c_0 + c_1z^3 + c_2z^6 + c_3z^{9} + \cdots + c_nz^{3n} + \cdots \\[4mu]
\operatorname{sm} z &= s_0z + s_1z^4 + s_2z^7 + s_3z^{10} + \cdots + s_nz^{3n+1} + \cdots
\end{aligned}
whose coefficients satisfy the recurrence Adams (1925)
:
c_n &= -\frac{1}{3n}\sum_{k=0}^{n-1} s_ks_{n-1-k} \\[4mu]
s_n &= \frac{1}{3n + 1}\sum_{k=0}^n c_kc_{n-k}
\end{aligned}
These recurrences result in:van Fossen Conrad & Flajolet (2005). Also see OEIS [https://oeis.org/A104133 A104133], [https://oeis.org/A104134 A104134].
:
\operatorname{cm} z &= 1 - \frac{1}{3}z^3 + \frac{1}{18}z^6 - \frac{23}{2268}z^{9} + \frac{25}{13608}z^{12} - \frac{619}{1857492}z^{15} + \cdots \\[8mu]
\operatorname{sm} z &= z -\frac{1}{6}z^4 + \frac{2}{63}z^7 - \frac{13}{2268}z^{10} + \frac{23}{22113}z^{13} - \frac{2803}{14859936}z^{16} + \cdots
\end{aligned}
Relation to other elliptic functions
= Weierstrass elliptic function =
File:Weierstrass cubic curve related to the Dixon elliptic functions.png for the Weierstrass ℘-function related to the Dixon elliptic functions.]]
The equianharmonic Weierstrass elliptic function with lattice a scaling of the Eisenstein integers, can be defined as:Reinhardt & Walker (2010)
:
The function solves the differential equation:
:
We can also write it as the inverse of the integral:
:
In terms of , the Dixon elliptic functions can be written:Chapling (2018), Robinson (2019). Adams (1925) instead expresses the Dixon elliptic functions in terms of the Weierstrass elliptic function
:
Likewise, the Weierstrass elliptic function can be written in terms of Dixon elliptic functions:
:
= Jacobi elliptic functions =
The Dixon elliptic functions can also be expressed using Jacobi elliptic functions, which was first observed by Cayley.van Fossen Conrad & Flajolet (2005), p.38 Let , , , , and . Then, let
: ,
Finally, the Dixon elliptic functions are as so:
:
Generalized trigonometry
Several definitions of generalized trigonometric functions include the usual trigonometric sine and cosine as an case, and the functions sm and cm as an case.Lundberg (1879), Grammel (1948), Shelupsky (1959), Burgoyne (1964), Gambini, Nicoletti, & Ritelli (2021).
For example, defining and the inverses of an integral:
:
The area in the positive quadrant under the curve is
:
The quartic case results in a square lattice in the complex plane, related to the lemniscate elliptic functions.
Applications
File:Conformal map projection from globe to octahedron.png
The Dixon elliptic functions are conformal maps from an equilateral triangle to a disk, and are therefore helpful for constructing polyhedral conformal map projections involving equilateral triangles, for example projecting the sphere onto a triangle, hexagon, tetrahedron, octahedron, or icosahedron.Adams (1925), Cox (1935), Magis (1938), Lee (1973), Lee (1976), McIlroy (2011), Chapling (2016).
See also
Notes
{{reflist|30em}}
References
{{refbegin|30em}}
- O. S. Adams (1925). Elliptic functions applied to conformal world maps (No. 297). US Government Printing Office. ftp://ftp.library.noaa.gov/docs.lib/htdocs/rescue/cgs_specpubs/QB275U35no1121925.pdf
- R. Bacher & P. Flajolet (2010) “Pseudo-factorials, elliptic functions, and continued fractions” The Ramanujan journal 21(1), 71–97. https://arxiv.org/pdf/0901.1379.pdf
- A. Cayley (1882) “Reduction of to elliptic integrals”. Messenger of Mathematics 11, 142–143. https://gdz.sub.uni-goettingen.de/id/PPN599484047_0011?tify={%22pages%22:%5b146%5d}
- F. D. Burgoyne (1964) “Generalized trigonometric functions”. Mathematics of Computation 18(86), 314–316. https://www.jstor.org/stable/2003310
- A. Cayley (1883) “On the elliptic function solution of the equation {{nowrap|{{math|x{{sup|3}} + y{{sup|3}} − 1 {{=}} 0}}}}”, Proceedings of the Cambridge Philosophical Society 4, 106–109. https://archive.org/details/proceedingsofcam4188083camb/page/106/
- R. Chapling (2016) “Invariant Meromorphic Functions on the Wallpaper Groups”. https://arxiv.org/pdf/1608.05677
- J. F. Cox (1935) “Répresentation de la surface entière de la terre dans une triangle équilatéral”, Bulletin de la Classe des Sciences, Académie Royale de Belgique 5e, 21, 66–71.
- G. Dillner (1873) “Traité de calcul géométrique supérieur”, Chapter 16, Nova acta Regiae Societatis Scientiarum Upsaliensis, Ser. III 8, 94–102. https://archive.org/details/novaactaregiaeso38kung/page/94/
- {{cite journal
| first = A. C.
| last = Dixon
| authorlink = Alfred Cardew Dixon
| title = On the doubly periodic functions arising out of the curve {{nowrap|{{math|x{{sup|3}} + y{{sup|3}} − 3αxy {{=}} 1}}}}
| journal = Quarterly Journal of Pure and Applied Mathematics
| year = 1890
| volume = XXIV
| pages = 167–233
| url = https://gdz.sub.uni-goettingen.de/id/PPN600494829_0024?tify={%22pages%22:%5b179%5d} }}
- A. Dixon (1894) The elementary properties of the elliptic functions. MacMillian. https://archive.org/details/elempropellipt00dixorich/
- {{cite journal
| last1 = Van Fossen Conrad | first1 = Eric
| last2 = Flajolet | first2 = Philippe | author2-link = Philippe Flajolet
| arxiv = math/0507268
| date = 2005
| journal = Séminaire Lotharingien de Combinatoire
| mr = 2223029
| page = Art. B54g, 44
| title = The Fermat cubic, elliptic functions, continued fractions, and a combinatorial excursion
| volume = 54| bibcode = 2005math......7268V}}
- A. Gambini, G. Nicoletti, & D. Ritelli (2021) “Keplerian trigonometry”. Monatshefte für Mathematik 195(1), 55–72. https://doi.org/10.1007/s00605-021-01512-0
- R. Grammel (1948) “Eine Verallgemeinerung der Kreis-und Hyperbelfunktionen”. Archiv der Mathematik 1(1), 47–51. https://doi.org/10.1007/BF02038206
- J. C. Langer & D. A. Singer (2014) “The Trefoil”. Milan Journal of Mathematics 82(1), 161–182. https://case.edu/artsci/math/langer/jlpreprints/Trefoil.pdf
- M. Laurent (1949) “Tables de la fonction elliptique de Dixon pour l’intervalle 0-0, 1030”. Bulletin de l’Académie Royale des Sciences de Belgique Classe des Sciences, 35, 439–450.
- L. P. Lee (1973) “The Conformal Tetrahedric Projection with some Practical Applications”. The Cartographic Journal, 10(1), 22–28. https://doi.org/10.1179/caj.1973.10.1.22
- L. P. Lee (1976) [https://archive.org/details/conformalproject0000leel Conformal Projections Based on Elliptic Functions]. Toronto: B. V. Gutsell, York University. Cartographica Monographs No. 16. {{isbn|0-919870-16-3}}. Supplement No. 1 to [https://www.utpjournals.press/toc/cart/13/1 The Canadian Cartographer 13].
- E. Lundberg (1879) “Om hypergoniometriska funktioner af komplexa variabla”. Manuscript, 1879. Translation by Jaak Peetre “On hypergoniometric functions of complex variables”. https://web.archive.org/web/20161024183030/http://www.maths.lth.se/matematiklu/personal/jaak/hypergf.ps
- J. Magis (1938) “Calcul du canevas de la représentation conforme de la sphère entière dans un triangle équilatéral”. Bulletin Géodésique 59(1), 247–256. http://doi.org/10.1007/BF03029866
- M. D. McIlroy (2011) “Wallpaper maps”. Dependable and Historic Computing. Springer. 358–375. https://link.springer.com/chapter/10.1007/978-3-642-24541-1_27
- W. P. Reinhardt & P. L. Walker (2010) “Weierstrass Elliptic and Modular Functions”, NIST Digital Library of Mathematical Functions, §23.5(v). https://dlmf.nist.gov/23.5#v
- P. L. Robinson (2019) “The Dixonian elliptic functions”. https://arxiv.org/abs/1901.04296
- H. A. Schwarz (1869) “Ueber einige Abbildungsaufgaben”. Crelles Journal 1869(70), 105–120. http://doi.org/10.1515/crll.1869.70.105
- B. R. Seth & F. P. White (1934) “Torsion of beams whose cross-section is a regular polygon of n sides”. Mathematical Proceedings of the Cambridge Philosophical Society, 30(2), 139. http://doi.org/10.1017/s0305004100016558
- D. Shelupsky (1959) “A generalization of the trigonometric functions”. The American Mathematical Monthly 66(10), 879–884. https://www.jstor.org/stable/2309789
{{refend}}
External links
- Desmos plots:
- Real-valued Dixon elliptic functions https://www.desmos.com/calculator/5s4gdcnxh2.
- Parametrizing the cubic Fermat curve, https://www.desmos.com/calculator/elqqf4nwas
- On-Line Encyclopedia of Integer Sequences pages:
- “Coefficient of x^(3n+1)/(3n+1)! in the Maclaurin expansion of the Dixon elliptic function sm(x,0).” https://oeis.org/A104133
- “Coefficient of x^(3n)/(3n)! in the Maclaurin expansion of the Dixon elliptic function cm(x,0).” https://oeis.org/A104134
- “Pi(3): fundamental real period of the Dixonian elliptic functions sm(z) and cm(z).” https://oeis.org/A197374
- Mathematics Stack Exchange discussions:
- “On , the Dixonian elliptic functions, and the Borwein cubic theta functions”, https://math.stackexchange.com/q/2090523/
- “doubly periodic functions as tessellations (other than parallelograms)”, https://math.stackexchange.com/q/35671/