Weierstrass elliptic function

{{short description|Class of mathematical functions}}

{{Redirect|P-function|the phase-space function representing a quantum state|Glauber–Sudarshan P representation}}

In mathematics, the Weierstrass elliptic functions are elliptic functions that take a particularly simple form. They are named for Karl Weierstrass. This class of functions is also referred to as ℘-functions and they are usually denoted by the symbol ℘, a uniquely fancy script p. They play an important role in the theory of elliptic functions, i.e., meromorphic functions that are doubly periodic. A ℘-function together with its derivative can be used to parameterize elliptic curves and they generate the field of elliptic functions with respect to a given period lattice.

Image:Weierstrass p.svg

Symbol for Weierstrass \wp-function

File:Modell der Weierstraßschen p-Funktion -Schilling, XIV, 7ab, 8 - 313, 314-.jpg

Motivation

A cubic of the form C_{g_2,g_3}^\mathbb{C}=\{(x,y)\in\mathbb{C}^2:y^2=4x^3-g_2x-g_3\} , where g_2,g_3\in\mathbb{C} are complex numbers with g_2^3-27g_3^2\neq0, cannot be rationally parameterized. Yet one still wants to find a way to parameterize it.

For the quadric K=\left\{(x,y)\in\mathbb{R}^2:x^2+y^2=1\right\}; the unit circle, there exists a (non-rational) parameterization using the sine function and its derivative the cosine function:

\psi:\mathbb{R}/2\pi\mathbb{Z}\to K, \quad t\mapsto(\sin t,\cos t).

Because of the periodicity of the sine and cosine \mathbb{R}/2\pi\mathbb{Z} is chosen to be the domain, so the function is bijective.

In a similar way one can get a parameterization of C_{g_2,g_3}^\mathbb{C} by means of the doubly periodic \wp -function (see in the section "Relation to elliptic curves"). This parameterization has the domain \mathbb{C}/\Lambda , which is topologically equivalent to a torus.{{citation|surname1=Rolf Busam| title=Funktionentheorie 1|edition=4., korr. und erw. Aufl|publisher=Springer|publication-place=Berlin|at=p. 259| isbn=978-3-540-32058-6|date=2006|language=German}}

There is another analogy to the trigonometric functions. Consider the integral function

a(x)=\int_0^x\frac{dy}{\sqrt{1-y^2}} .

It can be simplified by substituting y=\sin t and s=\arcsin x :

a(x)=\int_0^s dt = s = \arcsin x .

That means a^{-1}(x) = \sin x . So the sine function is an inverse function of an integral function.{{citation| surname1=Jeremy Gray|title=Real and the complex: a history of analysis in the 19th century|publication-place=Cham|at=p. 71| isbn=978-3-319-23715-2|date=2015|language=German}}

Elliptic functions are the inverse functions of elliptic integrals. In particular, let:

u(z)=\int_z^\infin\frac{ds}{\sqrt{4s^3-g_2s-g_3}} .

Then the extension of u^{-1} to the complex plane equals the \wp -function.{{citation|surname1=Rolf Busam|title=Funktionentheorie 1|edition=4., korr. und erw. Aufl|publisher=Springer|publication-place=Berlin|at=p. 294|isbn=978-3-540-32058-6|date=2006|language=German}} This invertibility is used in complex analysis to provide a solution to certain nonlinear differential equations satisfying the Painlevé property, i.e., those equations that admit poles as their only movable singularities.{{cite book | last=Ablowitz | first=Mark J. | last2=Fokas | first2=Athanassios S. | title=Complex Variables: Introduction and Applications | publisher=Cambridge University Press | date=2003 | isbn=978-0-521-53429-1 | doi=10.1017/cbo9780511791246|page=185}}

Definition

File:Weierstrass elliptic function P.png

Let \omega_1,\omega_2\in\mathbb{C} be two complex numbers that are linearly independent over \mathbb{R} and let \Lambda:=\mathbb{Z}\omega_1+\mathbb{Z}\omega_2:=\{m\omega_1+n\omega_2: m,n\in\mathbb{Z}\} be the period lattice generated by those numbers. Then the \wp-function is defined as follows:

:\weierp(z,\omega_1,\omega_2):=\wp(z) = \frac{1}{z^2} + \sum_{\lambda\in\Lambda\setminus\{0\}}\left(\frac 1 {(z-\lambda)^2} - \frac 1 {\lambda^2}\right).

This series converges locally uniformly absolutely in the complex torus \mathbb{C} / \Lambda.

It is common to use 1 and \tau in the upper half-plane \mathbb{H}:=\{z\in\mathbb{C}:\operatorname{Im}(z) > 0\} as generators of the lattice. Dividing by \omega_1 maps the lattice \mathbb{Z}\omega_1+\mathbb{Z}\omega_2 isomorphically onto the lattice \mathbb{Z}+\mathbb{Z}\tau with \tau=\tfrac{\omega_2}{\omega_1}. Because -\tau can be substituted for \tau, without loss of generality we can assume \tau\in\mathbb{H}, and then define \wp(z,\tau) := \wp(z, 1,\tau). With that definition, we have \wp(z,\omega_1,\omega_2) = \omega_1^{-2}\wp(z/\omega_1,\omega_2/\omega_1).

Properties

::\wp(\lambda z , \lambda\omega_{1}, \lambda\omega_{2}) = \lambda^{-2} \wp (z, \omega_{1},\omega_{2}).

  • \wp is an even function. That means \wp(z)=\wp(-z) for all z \in \mathbb{C} \setminus \Lambda, which can be seen in the following way:

::\begin{align}

\wp(-z) & =\frac{1}{(-z)^2} + \sum_{\lambda\in\Lambda\setminus\{0\}}\left(\frac{1}{(-z-\lambda)^2}-\frac{1}{\lambda^2}\right) \\

& =\frac{1}{z^2}+\sum_{\lambda\in\Lambda\setminus\{0\}}\left(\frac{1}{(z+\lambda)^2}-\frac{1}{\lambda^2}\right) \\

& =\frac{1}{z^2}+\sum_{\lambda\in\Lambda\setminus\{0\}}\left(\frac{1}{(z-\lambda)^2}-\frac{1}{\lambda^2}\right)=\wp(z).

\end{align}

:The second last equality holds because \{-\lambda:\lambda \in \Lambda\}=\Lambda. Since the sum converges absolutely this rearrangement does not change the limit.

  • The derivative of \wp is given by:{{citation|surname1=Apostol, Tom M.|title=Modular functions and Dirichlet series in number theory|publisher=Springer-Verlag|publication-place=New York|at=p. 11|isbn=0-387-90185-X|date=1976| language=German}} \wp'(z)=-2\sum_{\lambda \in \Lambda}\frac1{(z-\lambda)^3}.
  • \wp and \wp' are doubly periodic with the periods \omega_1 and \omega_2. This means: \begin{aligned}

\wp(z+\omega_1) &= \wp(z) = \wp(z+\omega_2),\ \textrm{and} \\[3mu]

\wp'(z+\omega_1) &= \wp'(z) = \wp'(z+\omega_2).

\end{aligned} It follows that \wp(z+\lambda)=\wp(z) and \wp'(z+\lambda)=\wp'(z) for all \lambda \in \Lambda.

Laurent expansion

Let r:=\min\{{|\lambda}|:0\neq\lambda\in\Lambda\}. Then for 0<|z| the \wp-function has the following Laurent expansion

\wp(z)=\frac1{z^2}+\sum_{n=1}^\infin (2n+1)G_{2n+2}z^{2n}

where

G_n=\sum_{0\neq\lambda\in\Lambda}\lambda^{-n} for n \geq 3 are so called Eisenstein series.

Differential equation

Set g_2=60G_4 and g_3=140G_6. Then the \wp-function satisfies the differential equation

\wp'^2(z) = 4\wp ^3(z)-g_2\wp(z)-g_3.

This relation can be verified by forming a linear combination of powers of \wp and \wp' to eliminate the pole at z=0. This yields an entire elliptic function that has to be constant by Liouville's theorem.

=Invariants=

Image:Gee three real.jpeg

Image:Gee three imag.jpeg

The coefficients of the above differential equation g_2 and g_3 are known as the invariants. Because they depend on the lattice \Lambda they can be viewed as functions in \omega_1 and \omega_2.

The series expansion suggests that g_2 and g_3 are homogeneous functions of degree -4 and -6. That is{{Cite book|last=Apostol, Tom M.|url=https://www.worldcat.org/oclc/2121639|title=Modular functions and Dirichlet series in number theory|date=1976|publisher=Springer-Verlag|isbn=0-387-90185-X|location=New York| pages=14| oclc=2121639}}

g_2(\lambda \omega_1, \lambda \omega_2) = \lambda^{-4} g_2(\omega_1, \omega_2)

g_3(\lambda \omega_1, \lambda \omega_2) = \lambda^{-6} g_3(\omega_1, \omega_2) for \lambda \neq 0.

If \omega_1 and \omega_2 are chosen in such a way that \operatorname{Im}\left( \tfrac{\omega_2}{\omega_1} \right)>0 , g_2 and g_3 can be interpreted as functions on the upper half-plane \mathbb{H}:=\{z\in\mathbb{C}:\operatorname{Im}(z)>0\}.

Let \tau=\tfrac{\omega_2}{\omega_1}. One has:{{citation|title=Modular functions and Dirichlet series in number theory|date=1976|at=p. 14|publication-place=New York|publisher=Springer-Verlag|language=German|isbn=0-387-90185-X| surname1=Apostol, Tom M.}}

g_2(1,\tau)=\omega_1^4g_2(\omega_1,\omega_2),

g_3(1,\tau)=\omega_1^6 g_3(\omega_1,\omega_2).

That means g2 and g3 are only scaled by doing this. Set

g_2(\tau):=g_2(1,\tau) and g_3(\tau):=g_3(1,\tau).

As functions of \tau\in\mathbb{H}, g_2 and g_3 are so called modular forms.

The Fourier series for g_2 and g_3 are given as follows:{{Cite book|last=Apostol, Tom M.|url=https://www.worldcat.org/oclc/20262861|title=Modular functions and Dirichlet series in number theory|date=1990| publisher=Springer-Verlag|isbn=0-387-97127-0|edition=2nd|location=New York|pages=20|oclc=20262861}}

g_2(\tau)=\frac43\pi^4 \left[ 1+ 240\sum_{k=1}^\infty \sigma_3(k) q^{2k} \right]

g_3(\tau)=\frac{8}{27}\pi^6 \left[ 1- 504\sum_{k=1}^\infty \sigma_5(k) q^{2k} \right]

where

\sigma_m(k):=\sum_{d\mid{k}}d^m

is the divisor function and q=e^{\pi i\tau} is the nome.

=Modular discriminant=

Image:Discriminant real part.jpeg

The modular discriminant \Delta is defined as the discriminant of the characteristic polynomial of the differential equation \wp'^2(z) = 4\wp ^3(z)-g_2\wp(z)-g_3 as follows:

\Delta=g_2^3-27g_3^2.

The discriminant is a modular form of weight 12. That is, under the action of the modular group, it transforms as

\Delta \left( \frac {a\tau+b} {c\tau+d}\right) = \left(c\tau+d\right)^{12} \Delta(\tau)

where a,b,d,c\in\mathbb{Z} with ad-bc = 1.{{Cite book|last=Apostol | first = Tom M.| url=https://www.worldcat.org/oclc/2121639|title=Modular functions and Dirichlet series in number theory| date=1976| publisher=Springer-Verlag|isbn=0-387-90185-X|location=New York|pages=50|oclc=2121639}}

Note that \Delta=(2\pi)^{12}\eta^{24} where \eta is the Dedekind eta function.{{Cite book| last=Chandrasekharan, K. (Komaravolu), 1920-|url=https://www.worldcat.org/oclc/12053023|title=Elliptic functions| date=1985| publisher=Springer-Verlag|isbn=0-387-15295-4|location=Berlin|pages=122|oclc=12053023}}

For the Fourier coefficients of \Delta, see Ramanujan tau function.

=The constants ''e''<sub>1</sub>, ''e''<sub>2</sub> and ''e''<sub>3</sub>=

e_1, e_2 and e_3 are usually used to denote the values of the \wp-function at the half-periods.

e_1\equiv\wp\left(\frac{\omega_1}{2}\right)

e_2\equiv\wp\left(\frac{\omega_2}{2}\right)

e_3\equiv\wp\left(\frac{\omega_1+\omega_2}{2}\right)

They are pairwise distinct and only depend on the lattice \Lambda and not on its generators.{{citation| first=Rolf | last = Busam|title=Funktionentheorie 1|edition=4., korr. und erw. Aufl|publisher=Springer|publication-place=Berlin| at=p. 270|isbn=978-3-540-32058-6|date=2006|language=German}}

e_1, e_2 and e_3 are the roots of the cubic polynomial 4\wp(z)^3-g_2\wp(z)-g_3 and are related by the equation:

e_1+e_2+e_3=0.

Because those roots are distinct the discriminant \Delta does not vanish on the upper half plane.{{citation| first=Tom M. |last = Apostol|title=Modular functions and Dirichlet series in number theory|publisher=Springer-Verlag|publication-place=New York|at=p. 13|isbn=0-387-90185-X|date=1976|language=German}} Now we can rewrite the differential equation:

\wp'^2(z)=4(\wp(z)-e_1)(\wp(z)-e_2)(\wp(z)-e_3).

That means the half-periods are zeros of \wp'.

The invariants g_2 and g_3 can be expressed in terms of these constants in the following way:{{citation|surname1=K. Chandrasekharan|title=Elliptic functions|publisher=Springer-Verlag|publication-place=Berlin|at=p. 33| isbn=0-387-15295-4|date=1985|language=German}}

g_2 = -4 (e_1 e_2 + e_1 e_3 + e_2 e_3)

g_3 = 4 e_1 e_2 e_3

e_1, e_2 and e_3 are related to the modular lambda function:

\lambda (\tau)=\frac{e_3-e_2}{e_1-e_2},\quad \tau=\frac{\omega_2}{\omega_1}.

Relation to Jacobi's elliptic functions

For numerical work, it is often convenient to calculate the Weierstrass elliptic function in terms of Jacobi's elliptic functions.

The basic relations are:{{cite book | author = Korn GA, Korn TM | year = 1961 | title = Mathematical Handbook for Scientists and Engineers | publisher = McGraw–Hill | location = New York | pages = 721 | lccn = 59014456}}

\wp(z) = e_3 + \frac{e_1 - e_3}{\operatorname{sn}^2 w}

= e_2 + ( e_1 - e_3 ) \frac{\operatorname{dn}^2 w}{\operatorname{sn}^2 w}

= e_1 + ( e_1 - e_3 ) \frac{\operatorname{cn}^2 w}{\operatorname{sn}^2 w}

where e_1,e_2 and e_3 are the three roots described above and where the modulus k of the Jacobi functions equals

k = \sqrt\frac{e_2 - e_3}{e_1 - e_3}

and their argument w equals

w = z \sqrt{e_1 - e_3}.

Relation to Jacobi's theta functions

The function \wp (z,\tau)=\wp (z,1,\omega_2/\omega_1) can be represented by Jacobi's theta functions:

\wp (z,\tau)=\left(\pi \theta_2(0,q)\theta_3(0,q)\frac{\theta_4(\pi z,q)}{\theta_1(\pi z,q)}\right)^2-\frac{\pi^2}{3}\left(\theta_2^4(0,q)+\theta_3^4(0,q)\right)

where q=e^{\pi i\tau} is the nome and \tau is the period ratio (\tau\in\mathbb{H}).{{dlmf|first1=W. P.|last1=Reinhardt|first2=P. L.|last2=Walker|id=23.6.E7|title=Weierstrass Elliptic and Modular Functions}} This also provides a very rapid algorithm for computing \wp (z,\tau).

Relation to elliptic curves

{{see also|Elliptic curve#Elliptic curves over the complex numbers}}

Consider the embedding of the cubic curve in the complex projective plane

:\bar C_{g_2,g_3}^\mathbb{C} = \{(x,y)\in\mathbb{C}^2:y^2=4x^3-g_2x-g_3\}\cup\{O\}\subset \mathbb{C}^{2} \cup \mathbb{P}_1(\mathbb{C}) = \mathbb{P}_2(\mathbb{C}).

where O is a point lying on the line at infinity \mathbb{P}_1(\mathbb{C}). For this cubic there exists no rational parameterization, if \Delta \neq 0.{{citation|surname1=Hulek, Klaus.|title=Elementare Algebraische Geometrie : Grundlegende Begriffe und Techniken mit zahlreichen Beispielen und Anwendungen|edition=2., überarb. u. erw. Aufl. 2012|publisher=Vieweg+Teubner Verlag|publication-place=Wiesbaden|at=p. 8|isbn=978-3-8348-2348-9|date=2012|language=German}} In this case it is also called an elliptic curve. Nevertheless there is a parameterization in homogeneous coordinates that uses the \wp-function and its derivative \wp':{{citation|title=Elementare Algebraische Geometrie : Grundlegende Begriffe und Techniken mit zahlreichen Beispielen und Anwendungen|date=2012|at=p. 12|edition=2., überarb. u. erw. Aufl. 2012|publication-place=Wiesbaden|publisher=Vieweg+Teubner Verlag|language=German|isbn=978-3-8348-2348-9|surname1=Hulek, Klaus.}}

: \varphi(\wp,\wp'): \mathbb{C}/\Lambda\to\bar C_{g_2,g_3}^\mathbb{C}, \quad

z \mapsto \begin{cases}

\left[\wp(z):\wp'(z):1\right] & z \notin \Lambda \\

\left[0:1:0\right] \quad & z \in \Lambda

\end{cases}

Now the map \varphi is bijective and parameterizes the elliptic curve \bar C_{g_2,g_3}^\mathbb{C}.

\mathbb{C}/\Lambda is an abelian group and a topological space, equipped with the quotient topology.

It can be shown that every Weierstrass cubic is given in such a way. That is to say that for every pair g_2,g_3\in\mathbb{C} with \Delta = g_2^3 - 27g_3^2 \neq 0 there exists a lattice \mathbb{Z}\omega_1+\mathbb{Z}\omega_2, such that

g_2=g_2(\omega_1,\omega_2) and g_3=g_3(\omega_1,\omega_2) .{{citation|surname1=Hulek, Klaus.| title=Elementare Algebraische Geometrie : Grundlegende Begriffe und Techniken mit zahlreichen Beispielen und Anwendungen| edition=2., überarb. u. erw. Aufl. 2012|publisher=Vieweg+Teubner Verlag|publication-place=Wiesbaden|at=p. 111| isbn=978-3-8348-2348-9| date=2012|language=German}}

The statement that elliptic curves over \mathbb{Q} can be parameterized over \mathbb{Q}, is known as the modularity theorem. This is an important theorem in number theory. It was part of Andrew Wiles' proof (1995) of Fermat's Last Theorem.

Addition theorems

Let z,w\in\mathbb{C}, so that z,w,z+w,z-w\notin\Lambda . Then one has:{{citation| surname1=Rolf Busam|title=Funktionentheorie 1|edition=4., korr. und erw. Aufl|publisher=Springer|publication-place=Berlin|at=p. 286|isbn=978-3-540-32058-6|date=2006|language=German}}

\wp(z+w)=\frac14 \left[\frac{\wp'(z)-\wp'(w)}{\wp(z)-\wp(w)}\right]^2-\wp(z)-\wp(w).

As well as the duplication formula:

\wp(2z)=\frac14\left[\frac{\wp''(z)}{\wp'(z)}\right]^2-2\wp(z).

== Proofs ==

1. These formulas can come with a geometric interpretation. If one looks at the elliptic curve C_{g_2,g_3}^{\mathbb{C}} a line \lambda= \{(x,y)\in\mathbb{C}^2:y=mx+q\} intersects it in three points:C_{g_2,g_3}^{\mathbb{C}} \cap \lambda=\{P,Q,R\} . Since these points belong to the elliptic curve they can be labeled as P=(\wp(u),\wp'(u)) \quad Q=(\wp(v),\wp'(v)) \quad R=(\wp(u+v),\wp'(u+v)) with (u,v)\notin \Lambda . From the formula of a secant line we have m=\frac{y_P-y_Q}{x_P-x_Q}=\frac{\wp'(u)-\wp'(v)}{\wp(u)-\wp(v)} letting C_{g_2,g_3}^{\mathbb{C}} = \lambda we have the equation (mx+q)^2=4x^3-g_2x-g_3 which becomes 4x^3-m^2x^2-(2mq+g_2)x-g_3-q^2=0 using Vieta's formulas one obtains:

x_P+x_Q+x_R=\frac{m^2}4 which provides the wanted formula

\wp(u+v)+\wp(u)+\wp(v)=\frac14 \left[ \frac{\wp'(u)-\wp'(v)}{\wp(u)-\wp(v)} \right]^2

2. A second proof from Akhiezer's bookAkhiezer's book Elements of the theory of elliptic functions https://www.ams.org/books/mmono/079/mmono079-endmatter.pdf is the following:

if f is arbitrary elliptic function then:

f(u)=c\prod_{i=1}^n \frac{\sigma(u-a_i)}{\sigma(u-b_i)} \quad c \in \mathbb{C}

where \sigma is one of the Weierstrass functions and a_i , b_i are the respective zeros and poles in the period parallelogram. We then let a function

k(u,v)=\wp(u)-\wp(v) From the previous lemma we have:

k(u,v)=

\wp(u)-\wp(v)=c\frac{\sigma(u+v)\sigma(u-v)}{\sigma(u)^2}

From some calculations one can find that

c=\frac1{\sigma(v)^2} \implies\wp(u)-\wp(v)=\frac{\sigma(u+v)\sigma(u-v)}{\sigma(u)^2\sigma(v)^2}

By definition the Weierstrass Zeta function: \frac{d}{dz}\ln \sigma(z)=\zeta(z) therefore we logarithmicly differentiate both sides obtaining:

\frac{\wp'(u)}{\wp(u)-\wp(v)}=\zeta(u+v)-2\zeta(u)-\zeta(u-v)

Once again by definition \zeta'(z)=-\wp(z) thus by differentiating once more on both sides and rearranging the terms we obtain

-\wp(u+v)=-\wp(u)+\frac12 \frac{ \wp''(v)[\wp(u)-\wp(v) ]-\wp'(u)[\wp'(u)-\wp'(v)] }{ [\wp(u)-\wp(v) ]^2 }

Knowing that \wp has the following differential equation 2\wp=12\wp^2-g_2 and rearranging the terms one gets the wanted formula

\wp(u+v)=\frac14 \left[\frac{\wp'(u)-\wp'(v)}{\wp(u)-\wp(v)}\right]^2-\wp(u)-\wp(v).

Typography

The Weierstrass's elliptic function is usually written with a rather special, lower case script letter ℘, which was Weierstrass's own notation introduced in his lectures of 1862–1863.{{refn | group=footnote |

This symbol was also used in the version of Weierstrass's lectures published by Schwarz in the 1880s. The first edition of A Course of Modern Analysis by E. T. Whittaker in 1902 also used it.{{citation | title= The letter ℘ Name & origin? | author = teika kazura| publisher = MathOverflow | url= https://mathoverflow.net/q/278130 | date= 2017-08-17 | access-date=2018-08-30 }} }} It should not be confused with the normal mathematical script letters P: 𝒫 and 𝓅.

In computing, the letter ℘ is available as \wp in TeX. In Unicode the code point is {{unichar|2118|script capital p|html=}}, with the more correct alias {{smallcaps|1=weierstrass elliptic function}}.{{refn|group="footnote" |

The Unicode Consortium has acknowledged two problems with the letter's name: the letter is in fact lowercase, and it is not a "script" class letter, like {{unichar|1d4c5|mathematical script small p}}, but the letter for Weierstrass's elliptic function.

Unicode added the alias as a correction.{{cite web | work=Unicode Technical Note #27 | title=Known Anomalies in Unicode Character Names | url=http://unicode.org/notes/tn27/ | version=version 4 | publisher=Unicode, Inc. | date=2017-04-10 | access-date=2017-07-20 }}{{cite web | url=https://www.unicode.org/Public/10.0.0/ucd/NameAliases.txt | title=NameAliases-10.0.0.txt | date=2017-05-06 | access-date=2017-07-20 | publisher=Unicode, Inc.}}

}} In HTML, it can be escaped as &weierp;.

{{charmap

|2118|name1=Script Capital P /
Weierstrass Elliptic Function

}}

See also

Footnotes

{{Reflist|group=footnote}}

References

{{Reflist}}

  • {{AS ref|18|627}}
  • N. I. Akhiezer, Elements of the Theory of Elliptic Functions, (1970) Moscow, translated into English as AMS Translations of Mathematical Monographs Volume 79 (1990) AMS, Rhode Island {{isbn|0-8218-4532-2}}
  • Tom M. Apostol, Modular Functions and Dirichlet Series in Number Theory, Second Edition (1990), Springer, New York {{isbn|0-387-97127-0}} (See chapter 1.)
  • K. Chandrasekharan, Elliptic functions (1980), Springer-Verlag {{isbn|0-387-15295-4}}
  • Konrad Knopp, Funktionentheorie II (1947), Dover Publications; Republished in English translation as Theory of Functions (1996), Dover Publications {{isbn|0-486-69219-1}}
  • Serge Lang, Elliptic Functions (1973), Addison-Wesley, {{isbn|0-201-04162-6}}
  • E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, Cambridge University Press, 1952, chapters 20 and 21