Eta and eta prime mesons#General

{{Short description|Isosinglet meson made of quarks and antiquarks}}

{{Infobox particle

| name = Eta and eta prime mesons

| image =

| caption =

| num_types = 2

| composition = {{ubl

| {{nowrap|{{Subatomic particle|eta}} : ≈ \mathrm{\frac{1}{\sqrt{6}}}\left(u\bar{u} + d\bar{d} - 2s\bar{s}\right)}}

| {{nowrap|{{Subatomic particle|eta prime}} : ≈ \mathrm{\frac{1}{\sqrt{3}}}\left(u\bar{u} + d\bar{d} + s\bar{s}\right)}}

}}

| statistics = Bosonic

| group = Mesons

| interaction = Strong, Weak, Gravitation, Electromagnetic

| antiparticle = Self

| status =

| theorized =

| discovered = Aihud Pevsner et al. (1961)

| symbol = {{Subatomic particle|eta}}, {{Subatomic particle|eta prime}}

| mass = {{nowrap|{{Subatomic particle|eta}} : {{val|547.862|0.018|ul=MeV/c2}}}}
{{nowrap|{{Subatomic particle|eta prime}} : {{val|957.78|0.06|u=MeV/c2}}}}

| mean_lifetime = {{nowrap|{{Subatomic particle|eta}}: {{val|5.0|0.3|e=-19|ul=s}}}}, {{nowrap|{{Subatomic particle|eta prime}}: {{val|3.2|0.2|e=-21|u=s}}}}

| decay_particle = {{ubli

| {{Subatomic particle|Eta}} :
{{nowrap|{{Subatomic particle|link=yes|Photon}} + {{Subatomic particle|link=yes|Photon}}}} or
{{nowrap|{{Subatomic particle|link=yes|Pion0}} + {{Subatomic particle|link=yes|Pion0}} + {{Subatomic particle|link=yes|Pion0}} or}}

{{nowrap|{{Subatomic particle|link=yes|Pion+}} + {{Subatomic particle|link=yes|Pion0}} + {{Subatomic particle|link=yes|Pion-}}}}

| {{Subatomic particle|Eta prime}} :
{{nowrap|{{Subatomic particle|link=yes|Pion+}} + {{Subatomic particle|link=yes|Pion-}} + {{Subatomic particle|Eta}} or}}

{{nowrap|({{Subatomic particle|link=yes|rho0}} + {{Subatomic particle|link=yes|Photon}}) / ({{Subatomic particle|link=yes|Pion+}} + {{Subatomic particle|link=yes|Pion-}} + {{Subatomic particle|link=yes|Photon}}) or}}

{{nowrap|{{Subatomic particle|link=yes|Pion0}} + {{Subatomic particle|link=yes|Pion0}} + {{Subatomic particle|link=yes|Photon}}}}

}}

| electric_charge = {{val|0|ul=e}}

| spin = 0

| strangeness =

| charm =

| bottomness =

| topness =

| isospin = 0

| hypercharge = 0

| parity = -1

| c_parity = +1

}}

The eta ({{Subatomic particle|eta}}) and eta prime meson ({{Subatomic particle|eta prime}}) are isosinglet mesons made of a mixture of up, down and strange quarks and their antiquarks. The charmed eta meson ({{Subatomic particle|charmed eta}}) and bottom eta meson ({{Subatomic particle|bottom eta}}) are similar forms of quarkonium; they have the same spin and parity as the (light) {{Subatomic particle|eta}} defined, but are made of charm quarks and bottom quarks respectively. The top quark is too heavy to form a similar meson, due to its very fast decay.

General

The eta was discovered in pionnucleon collisions at the Bevatron in 1961 by Aihud Pevsner et al. at a time when the proposal of the Eightfold Way was leading to predictions and discoveries of new particles from symmetry considerations.

The difference between the mass of the {{math|{{Subatomic particle|eta}} }} and that of the {{Subatomic particle|eta prime}} is larger than the quark model can naturally explain. This "QCD vacuum#Eta prime meson" can be resolved by the 't Hooft instanton mechanism, whose {{sfrac|1|{{mvar| N }}}} realization is also known as the Witten–Veneziano mechanism. Specifically, in QCD, the higher mass of the {{math|{{Subatomic particle|eta prime}} }} is very significant, since it is associated with the axial U{{sub|A}}(1) classical symmetry, which is explicitly broken through the chiral anomaly upon quantization; thus, although the "protected" {{math|{{Subatomic particle|eta}} }} mass is small, the {{math|{{Subatomic particle|eta prime}} }} is not.

Quark composition

The {{math|{{Subatomic particle|Eta}} }} particles belong to the "pseudo-scalar" nonet of mesons which have spin {{nowrap| Total angular momentum {{=}} 0 }} and negative parity, and {{math|{{Subatomic particle|eta}} }} and {{math|{{Subatomic particle|eta prime}} }} have zero total Isospin, and zero strangeness, and hypercharge. Each quark which appears in an {{math|{{Subatomic particle|eta}} }} particle is accompanied by its antiquark, hence all the main quantum numbers are zero, and the particle overall is "flavourless".

The basic SU(3) symmetry theory of quarks for the three lightest quarks, which only takes into account the strong force, predicts corresponding particles

: \mathrm{\eta}_1 = \frac{1}{\sqrt 3} \left( \mathrm{ u\bar{u} + d\bar{d} + s\bar{s} } \right) ~,

and

:\mathrm{\eta}_8 = \frac{1}{\sqrt 6} \left( \mathrm{ u\bar{u} + d\bar{d} - 2s\bar{s} } \right) ~.

The subscripts are labels that refer to the fact that {{math|η}}{{sub|1}} belongs to a singlet (which is fully antisymmetrical) and {{math|η}}{{sub|8}} is part of an octet. However, the electroweak interaction – which can transform one flavour of quark into another – causes a small but significant amount of "mixing" of the eigenstates (with mixing angle {{nobr| {{mvar|θ}}{{sub|P}} {{=}} −11.5°),}} so that the actual quark composition is a linear combination of these formulae. That is:

:\left(\begin{array}{cc}

\cos\theta_\mathrm{P} & - \sin\theta_\mathrm{P} \\

\sin\theta_\mathrm{P} & ~~\cos\theta_\mathrm{P}

\end{array}\right) \left(\begin{array}{c} \mathrm{\eta}_8 \\

\mathrm{\eta}_1 \end{array}\right) =

\left(\begin{array}{c} \mathrm{\eta} \\ \mathrm{\eta'} \end{array}\right) ~.

The unsubscripted name {{math| {{Subatomic particle|eta}} }} refers to the real particle which is actually observed and which is close to the {{math|η}}{{sub|8}}. The {{math| {{Subatomic particle|eta prime}} }} is the observed particle close to {{math|η}}{{sub|1}}.

The {{math|{{Subatomic particle|eta}} }} and {{math|{{Subatomic particle|eta prime}} }} particles are closely related to the better-known neutral pion {{math|{{Subatomic particle|link=yes|pion0}},}} where

:\mathrm{\pi}^0 = \frac{1}{\sqrt 2} \left( \mathrm{ u\bar{u} - d\bar{d} } \right) ~.

In fact, {{math|{{subatomic particle|pion0}},}} {{math|η}}{{sub|1}}, and {{math|η}}{{sub|8}} are three mutually orthogonal, linear combinations of the quark pairs {{subatomic particle|up quark}}{{subatomic particle|up antiquark}}, {{subatomic particle|down quark}}{{subatomic particle|down antiquark}}, and {{subatomic particle|strange quark}}{{subatomic particle|strange antiquark}}; they are at the centre of the pseudo-scalar nonet of mesons with all the main quantum numbers equal to zero.

η′ meson

The η′ meson ({{Subatomic particle|eta prime}}) is a flavor SU(3) singlet, unlike the {{Subatomic particle|eta}}. It is a different superposition of the same quarks as the eta meson ({{Subatomic particle|eta}}), as described above, and it has a higher mass, a different decay state, and a shorter lifetime.

Fundamentally, it results from the direct sum decomposition of the approximate SU(3) flavor symmetry among the 3 lightest quarks, \mathbb{3} \times \bar{\mathbb{3}} = \mathbb{1} + \mathbb{8}, where 1 corresponds to η1 before s light quark mixing yields {{Subatomic particle|eta prime}}.

See also

References

{{Reflist|refs=

[http://pdg.lbl.gov/2012/reviews/rpp2012-rev-quark-model.pdf Quark Model Review] as appearing in {{cite journal

|last1=Beringer |first1=J.

|author2=et al. (PDG)

|year=2012

|title=Review of Particle Physics

|url=http://pdg.lbl.gov/2012/reviews/rpp2012-rev-quark-model.pdf

|journal=Physical Review D

|volume=86 |issue=1 |pages=010001

|bibcode= 2012PhRvD..86a0001B

|doi= 10.1103/PhysRevD.86.010001

|doi-access=free

}}

[http://pdg.lbl.gov/2014/tables/rpp2014-tab-mesons-light.pdf Light Unflavored Mesons] as appearing in {{cite journal

|last1=Olive |first1=K. A.

|author2=et al. (PDG)

|year=2014

|title=Review of Particle Physics

|journal=Chinese Physics C

|volume=38 |issue= 9|pages=090001

|bibcode=2014ChPhC..38i0001O

|doi=10.1088/1674-1137/38/9/090001

|arxiv=1412.1408

|s2cid=118395784

}}

{{cite book

|last=Jones

|first=H. F.

|year=1998

|title=Groups, Representations and Physics

|publisher=IOP Publishing

|isbn=978-0-7503-0504-4

|url-access=registration

|url=https://archive.org/details/groupsrepresenta0000jone_j8n8

}} Page 150 describes the SU(3) pseudo-scalar nonet of mesons including {{Subatomic particle|eta}} and {{Subatomic particle|eta prime}}. Page 154 defines η1 and η8 and explains the mixing (leading to {{Subatomic particle|eta}} and {{Subatomic particle|eta prime}}).

{{cite journal

|last1=Kupść |first1=A.

|last2= |first2=

|last3= |first3=

|last4= |first4=

|year=2007

|title=What is interesting in {{Subatomic particle|eta}} and {{Subatomic particle|eta prime}} Meson Decays?

|journal=AIP Conference Proceedings

|volume=950 |pages=165–179

|arxiv=0709.0603

|bibcode=2007AIPC..950..165K

|doi=10.1063/1.2819029

|s2cid=15930194

}}

The Wikipedia meson article describes the SU(3) pseudo-scalar nonet of mesons including {{Subatomic particle|eta}} and {{Subatomic particle|eta prime}}.

{{cite journal

|last1='t Hooft |first1=G.

|year=1976

|title=Symmetry Breaking through Bell-Jackiw Anomalies

|journal=Physical Review Letters

|volume=37 |issue=1 |pages=8–11

|bibcode=1976PhRvL..37....8T

|doi=10.1103/PhysRevLett.37.8

}}

{{cite journal

|last1=Witten |first1=E.

|year=1979

|title=Current algebra theorems for the U(1) "Goldstone boson"

|journal=Nuclear Physics B

|volume=156 |issue=2 |pages=269–283

|bibcode=1979NuPhB.156..269W

|doi=10.1016/0550-3213(79)90031-2

}}

{{cite journal

|last1=Veneziano |first1=G.

|year=1979

|title=U(1) without instantons

|journal=Nuclear Physics B

|volume=159 |issue=1–2 | pages=213–224

|bibcode=1979NuPhB.159..213V

|doi=10.1016/0550-3213(79)90332-8

|url=https://cds.cern.ch/record/133349

}}

{{cite journal

|last1=Del Debbio |first1=L.

|last2=Giusti |first2=L.

|last3=Pica |first3=C.

|year=2005

|title=Topological Susceptibility in SU(3) Gauge Theory

|journal=Physical Review Letters

|volume=94 |issue=3 |pages=032003

|arxiv=hep-th/0407052

|bibcode=2005PhRvL..94c2003D

|doi=10.1103/PhysRevLett.94.032003

|pmid=15698253

|s2cid=930312

}}

{{cite journal

|last1=Lüscher |first1=M.

|last2=Palombi |first2=F.

|year=2010

|title=Universality of the topological susceptibility in the SU(3) gauge theory

|journal=Journal of High Energy Physics

|volume=2010 |issue=9 |pages=110

|arxiv=1008.0732

|bibcode=2010JHEP...09..110L

|doi=10.1007/JHEP09(2010)110

|s2cid=119213800

}}

{{cite conference

|last1=Cè |first1=M.

|last2=Consonni |first2=C.

|last3=Engel |first3=G.

|last4=Giusti |first4=L.

|year=2014

|title=Testing the Witten–Veneziano mechanism with the Yang–Mills gradient flow on the lattice

|conference=32nd International Symposium on Lattice Field Theory

|arxiv=1410.8358

|bibcode=2014arXiv1410.8358C}}

}}