Euler–Lagrange equation

{{Short description|Second-order partial differential equation describing motion of mechanical system}}

In the calculus of variations and classical mechanics, the Euler–Lagrange equations{{cite book|first=Charles|last=Fox|title=An introduction to the calculus of variations|publisher=Courier Dover Publications|year=1987|isbn=978-0-486-65499-7}} are a system of second-order ordinary differential equations whose solutions are stationary points of the given action functional. The equations were discovered in the 1750s by Swiss mathematician Leonhard Euler and Italian mathematician Joseph-Louis Lagrange.

Because a differentiable functional is stationary at its local extrema, the Euler–Lagrange equation is useful for solving optimization problems in which, given some functional, one seeks the function minimizing or maximizing it. This is analogous to Fermat's theorem in calculus, stating that at any point where a differentiable function attains a local extremum its derivative is zero.

In Lagrangian mechanics, according to Hamilton's principle of stationary action, the evolution of a physical system is described by the solutions to the Euler equation for the action of the system. In this context Euler equations are usually called Lagrange equations. In classical mechanics, {{cite book|author1-link=Herbert Goldstein|author2-link=Charles P. Poole|first1=H.|last1=Goldstein|first2=C.P.|last2=Poole|first3=J.|last3=Safko|title=Classical Mechanics|publisher=Addison Wesley|year=2014|edition=3rd}} it is equivalent to Newton's laws of motion; indeed, the Euler-Lagrange equations will produce the same equations as Newton's Laws. This is particularly useful when analyzing systems whose force vectors are particularly complicated. It has the advantage that it takes the same form in any system of generalized coordinates, and it is better suited to generalizations. In classical field theory there is an analogous equation to calculate the dynamics of a field.

History

File:Tautochrone curve.gif problem. ]]

The Euler–Lagrange equation was developed in the 1750s by Euler and Lagrange in connection with their studies of the tautochrone problem. This is the problem of determining a curve on which a weighted particle will fall to a fixed point in a fixed amount of time, independent of the starting point.

Lagrange solved this problem in 1755 and sent the solution to Euler. Both further developed Lagrange's method and applied it to mechanics, which led to the formulation of Lagrangian mechanics. Their correspondence ultimately led to the calculus of variations, a term coined by Euler himself in 1766.[http://numericalmethods.eng.usf.edu/anecdotes/lagrange.pdf A short biography of Lagrange] {{webarchive|url=https://web.archive.org/web/20070714022022/http://numericalmethods.eng.usf.edu/anecdotes/lagrange.pdf |date=2007-07-14 }}

Statement

Let (X,L) be a real dynamical system with n degrees of freedom. Here X is the configuration space and L=L(t,{\boldsymbol q}(t), {\boldsymbol v}(t)) the Lagrangian, i.e. a smooth real-valued function such that {\boldsymbol q}(t) \in X, and {\boldsymbol v}(t) is an n-dimensional "vector of speed". (For those familiar with differential geometry, X is a smooth manifold, and L : {\mathbb R}_t \times X \times TX \to {\mathbb R}, where TX is the tangent bundle of X).

Let {\cal P}(a,b,\boldsymbol x_a,\boldsymbol x_b) be the set of smooth paths \boldsymbol q: [a,b] \to X for which \boldsymbol q(a) = \boldsymbol x_a and \boldsymbol q(b) = \boldsymbol x_b.

The action functional S : {\cal P}(a,b,\boldsymbol x_a,\boldsymbol x_b) \to \mathbb{R} is defined via

S[\boldsymbol q] = \int_a^b L(t,\boldsymbol q(t),\dot{\boldsymbol q}(t))\, dt.

A path \boldsymbol q \in {\cal P}(a,b,\boldsymbol x_a,\boldsymbol x_b) is a stationary point of S if and only if

{{Equation box 1

|indent =:

|equation = \frac{\partial L}{\partial q^i}(t,\boldsymbol q(t),\dot{\boldsymbol q}(t))-\frac{\mathrm{d}}{\mathrm{d}t}\frac{\partial L}{\partial \dot q^i}(t,\boldsymbol q(t),\dot{\boldsymbol q}(t)) = 0,

\quad i = 1, \dots, n.

|border colour = #50C878

|background colour = #ECFCF4}}

Here, \dot{\boldsymbol q}(t) is the time derivative of \boldsymbol q(t). When we say stationary point, we mean a stationary point of S with respect to any small perturbation in \boldsymbol q. See proofs below for more rigorous detail.

{{math proof|title=Derivation of the one-dimensional Euler–Lagrange equation|proof=

The derivation of the one-dimensional Euler–Lagrange equation is one of the classic proofs in mathematics. It relies on the fundamental lemma of calculus of variations.

We wish to find a function f which satisfies the boundary conditions f(a) = A, f(b) = B, and which extremizes the functional

J[f] = \int_a^b L(x,f(x),f'(x))\, \mathrm{d}x\ .

We assume that L is twice continuously differentiable.{{harvnb|Courant|Hilbert|1953|p=184}} A weaker assumption can be used, but the proof becomes more difficult.{{Citation needed|date=September 2013}}

If f extremizes the functional subject to the boundary conditions, then any slight perturbation of f that preserves the boundary values must either increase J (if f is a minimizer) or decrease J (if f is a maximizer).

Let f + \varepsilon \eta be the result of such a perturbation \varepsilon \eta of f, where \varepsilon is small and \eta is a differentiable function satisfying \eta (a) = \eta (b) = 0. Then define

\Phi(\varepsilon) = J[f+\varepsilon\eta] = \int_a^b L(x,f(x)+\varepsilon\eta(x), f'(x)+\varepsilon\eta'(x))\, \mathrm{d}x \ .

We now wish to calculate the total derivative of \Phi with respect to ε.

\begin{align}\frac{\mathrm{d} \Phi}{\mathrm{d} \varepsilon} &= \frac{\mathrm d}{\mathrm d\varepsilon}\int_a^b L(x,f(x)+\varepsilon\eta(x), f'(x)+\varepsilon\eta'(x)) \, \mathrm{d}x \\

&= \int_a^b \frac{\mathrm d}{\mathrm d\varepsilon} L(x,f(x)+\varepsilon\eta(x), f'(x)+\varepsilon\eta'(x)) \, \mathrm{d}x

\\

&= \int_a^b \left[\eta(x)\frac{\partial L}{\partial {f} }(x,f(x)+\varepsilon\eta(x),f'(x)+\varepsilon\eta'(x)) + \eta'(x)\frac{\partial L}{\partial f'}(x,f(x)+\varepsilon\eta(x),f'(x)+\varepsilon\eta'(x))\right] \mathrm{d}x \ . \end{align}

The third line follows from the fact that x does not depend on \varepsilon , i.e. \frac{\mathrm{d} x}{\mathrm{d} \varepsilon} = 0.

When \varepsilon = 0, \Phi has an extremum value, so that

\left.\frac{\mathrm d \Phi}{\mathrm d\varepsilon}\right|_{\varepsilon=0} = \int_a^b \left[ \eta(x) \frac{\partial L}{\partial f}(x,f(x),f'(x)) + \eta'(x) \frac{\partial L}{\partial f'}(x,f(x),f'(x)) \,\right]\,\mathrm{d}x = 0 \ .

The next step is to use integration by parts on the second term of the integrand, yielding

\int_a^b \left[ \frac{\partial L}{\partial f}(x,f(x),f'(x)) - \frac{\mathrm{d}}{\mathrm{d}x} \frac{\partial L}{\partial f'}(x,f(x),f'(x)) \right] \eta(x)\,\mathrm{d}x + \left[ \eta(x) \frac{\partial L}{\partial f'}(x,f(x),f'(x)) \right]_a^b = 0 \ .

Using the boundary conditions \eta (a) = \eta (b) = 0,

\int_a^b \left[ \frac{\partial L}{\partial f}(x,f(x),f'(x)) - \frac{\mathrm{d}}{\mathrm{d}x} \frac{\partial L}{\partial f'}(x,f(x),f'(x)) \right] \eta(x)\,\mathrm{d}x = 0 \, .

Applying the fundamental lemma of calculus of variations now yields the Euler–Lagrange equation

\frac{\partial L}{\partial f}(x,f(x),f'(x)) - \frac{\mathrm{d}}{\mathrm{d}x} \frac{\partial L}{\partial f'}(x,f(x),f'(x)) = 0 \, .

}}

{{math proof|title=Alternative derivation of the one-dimensional Euler–Lagrange equation|proof=

Given a functional

J = \int^b_a L(t, y(t), y'(t))\,\mathrm{d}t

on C^1([a, b]) with the boundary conditions y(a) = A and y(b) = B, we proceed by approximating the extremal curve by a polygonal line with n segments and passing to the limit as the number of segments grows arbitrarily large.

Divide the interval [a, b] into n equal segments with endpoints t_0 = a, t_1, t_2, \ldots, t_n = b and let \Delta t = t_k - t_{k - 1}. Rather than a smooth function y(t) we consider the polygonal line with vertices (t_0, y_0),\ldots,(t_n, y_n), where y_0 = A and y_n = B. Accordingly, our functional becomes a real function of n - 1 variables given by

J(y_1, \ldots, y_{n - 1}) \approx \sum^{n - 1}_{k = 0}L\left(t_k, y_k, \frac{y_{k + 1} - y_k}{\Delta t}\right)\Delta t.

Extremals of this new functional defined on the discrete points t_0,\ldots,t_n correspond to points where

\frac{\partial J(y_1,\ldots,y_n)}{\partial y_m} = 0.

Note that change of y_m affects L not only at m but also at m-1 for the derivative of the 3rd argument.

L(\text{3rd argument}) \left( \frac{y_{m+1} - (y_{m} + \Delta y_{m})}{\Delta t} \right) = L \left(\frac{y_{m+1} - y_{m}}{\Delta t}\right) - \frac{\partial L}{\partial y'} \frac{\Delta y_m}{\Delta t}

L \left( \frac{(y_{m} + \Delta y_{m}) - y_{m-1}}{\Delta t} \right)

= L \left(\frac{y_{m} - y_{m-1}}{\Delta t}\right) + \frac{\partial L}{\partial y'} \frac{\Delta y_m}{\Delta t}

Evaluating the partial derivative gives

\frac{\partial J}{\partial y_m} = L_y\left(t_m, y_m, \frac{y_{m + 1} - y_m}{\Delta t}\right)\Delta t + L_{y'}\left(t_{m - 1}, y_{m - 1}, \frac{y_m - y_{m - 1}}{\Delta t}\right) - L_{y'}\left(t_m, y_m, \frac{y_{m + 1} - y_m}{\Delta t}\right).

Dividing the above equation by \Delta t gives

\frac{\partial J}{\partial y_m \Delta t} = L_y\left(t_m, y_m, \frac{y_{m + 1} - y_m}{\Delta t}\right) - \frac{1}{\Delta t}\left[L_{y'}\left(t_m, y_m, \frac{y_{m + 1} - y_m}{\Delta t}\right) - L_{y'}\left(t_{m - 1}, y_{m - 1}, \frac{y_m - y_{m - 1}}{\Delta t}\right)\right],

and taking the limit as \Delta t \to 0 of the right-hand side of this expression yields

L_y - \frac{\mathrm{d}}{\mathrm{d}t}L_{y'} = 0.

The left hand side of the previous equation is the functional derivative \delta J/\delta y of the functional J. A necessary condition for a differentiable functional to have an extremum on some function is that its functional derivative at that function vanishes, which is granted by the last equation.

}}

Example

A standard example{{Citation needed|reason=this example seems like a poor one as it is not even presented as a dynamical system|date=July 2023}} is finding the real-valued function y(x) on the interval [a, b], such that y(a) = c and y(b) = d, for which the path length along the curve traced by y is as short as possible.

: \text{s} = \int_{a}^{b} \sqrt{\mathrm{d}x^2+\mathrm{d}y^2} = \int_{a}^{b} \sqrt{1+y'^2}\,\mathrm{d}x,

the integrand function being L(x,y, y') = \sqrt{1+y'^2} .

The partial derivatives of L are:

:\frac{\partial L(x, y, y')}{\partial y'} = \frac{y'}{\sqrt{1 + y'^2}} \quad \text{and} \quad

\frac{\partial L(x, y, y')}{\partial y} = 0.

By substituting these into the Euler–Lagrange equation, we obtain

:

\begin{align}

\frac{\mathrm{d}}{\mathrm{d}x} \frac{y'(x)}{\sqrt{1 + (y'(x))^2}} &= 0 \\

\frac{y'(x)}{\sqrt{1 + (y'(x))^2}} &= C = \text{constant} \\

\Rightarrow y'(x)&= \frac{C}{\sqrt{1-C^2}} =: A \\

\Rightarrow y(x) &= Ax + B

\end{align}

that is, the function must have a constant first derivative, and thus its graph is a straight line.

Generalizations

=Single function of single variable with higher derivatives=

The stationary values of the functional

:

I[f] = \int_{x_0}^{x_1} \mathcal{L}(x, f, f', f'', \dots, f^{(k)})~\mathrm{d}x ~;~~

f' := \cfrac{\mathrm{d}f}{\mathrm{d}x}, ~f'' := \cfrac{\mathrm{d}^2f}{\mathrm{d}x^2}, ~

f^{(k)} := \cfrac{\mathrm{d}^kf}{\mathrm{d}x^k}

can be obtained from the Euler–Lagrange equation{{cite book | last1=Courant | first1=R | author-link1=Richard Courant | last2=Hilbert | first2=D | author-link2=David Hilbert | title = Methods of Mathematical Physics | volume = I | edition = First English | publisher = Interscience Publishers, Inc | year = 1953 | location = New York | isbn = 978-0471504474}}

:

\cfrac{\partial \mathcal{L}}{\partial f} - \cfrac{\mathrm{d}}{\mathrm{d} x}\left(\cfrac{\partial \mathcal{L}}{\partial f'}\right) + \cfrac{\mathrm{d}^2}{\mathrm{d} x^2}\left(\cfrac{\partial \mathcal{L}}{\partial f''}\right) - \dots +

(-1)^k \cfrac{\mathrm{d}^k}{\mathrm{d} x^k}\left(\cfrac{\partial \mathcal{L}}{\partial f^{(k)}}\right) = 0

under fixed boundary conditions for the function itself as well as for the first k-1 derivatives (i.e. for all f^{(i)}, i \in \{0, ..., k-1\}). The endpoint values of the highest derivative f^{(k)} remain flexible.

=Several functions of single variable with single derivative=

If the problem involves finding several functions (f_1, f_2, \dots, f_m) of a single independent variable (x) that define an extremum of the functional

:

I[f_1,f_2, \dots, f_m] = \int_{x_0}^{x_1} \mathcal{L}(x, f_1, f_2, \dots, f_m, f_1', f_2', \dots, f_m')~\mathrm{d}x

~;~~ f_i' := \cfrac{\mathrm{d}f_i}{\mathrm{d}x}

then the corresponding Euler–Lagrange equations are{{cite book |last=Weinstock |first=R. |year=1952 |title=Calculus of Variations with Applications to Physics and Engineering |url=https://archive.org/details/calculusofvariat00wein |url-access=registration |publisher=McGraw-Hill |location=New York }}

:

\begin{align}

\frac{\partial \mathcal{L}}{\partial f_i} - \frac{\mathrm{d}}{\mathrm{d}x}\left(\frac{\partial \mathcal{L}}{\partial f_i'}\right) = 0 ; \quad i = 1, 2, ..., m

\end{align}

=Single function of several variables with single derivative=

A multi-dimensional generalization comes from considering a function on n variables. If \Omega is some surface, then

:

I[f] = \int_{\Omega} \mathcal{L}(x_1, \dots , x_n, f, f_{1}, \dots , f_{n})\, \mathrm{d}\mathbf{x}\,\! ~;~~

f_{j} := \cfrac{\partial f}{\partial x_j}

is extremized only if f satisfies the partial differential equation

: \frac{\partial \mathcal{L}}{\partial f} - \sum_{j=1}^{n} \frac{\partial}{\partial x_j}\left(\frac{\partial \mathcal{L}}{\partial f_{j}}\right) = 0.

When n = 2 and functional \mathcal I is the energy functional, this leads to the soap-film minimal surface problem.

=Several functions of several variables with single derivative=

If there are several unknown functions to be determined and several variables such that

:

I[f_1,f_2,\dots,f_m] = \int_{\Omega} \mathcal{L}(x_1, \dots , x_n, f_1, \dots, f_m, f_{1,1}, \dots , f_{1,n}, \dots, f_{m,1}, \dots, f_{m,n}) \, \mathrm{d}\mathbf{x}\,\! ~;~~

f_{i,j} := \cfrac{\partial f_i}{\partial x_j}

the system of Euler–Lagrange equations is

:

\begin{align}

\frac{\partial \mathcal{L}}{\partial f_1} - \sum_{j=1}^{n} \frac{\partial}{\partial x_j}\left(\frac{\partial \mathcal{L}}{\partial f_{1,j}}\right) &= 0_1 \\

\frac{\partial \mathcal{L}}{\partial f_2} - \sum_{j=1}^{n} \frac{\partial}{\partial x_j}\left(\frac{\partial \mathcal{L}}{\partial f_{2,j}}\right) &= 0_2 \\

\vdots \qquad \vdots \qquad &\quad \vdots \\

\frac{\partial \mathcal{L}}{\partial f_m} - \sum_{j=1}^{n} \frac{\partial}{\partial x_j}\left(\frac{\partial \mathcal{L}}{\partial f_{m,j}}\right) &= 0_m.

\end{align}

=Single function of two variables with higher derivatives=

If there is a single unknown function f to be determined that is dependent on two variables x1 and x2 and if the functional depends on higher derivatives of f up to n-th order such that

:

\begin{align}

I[f] & = \int_{\Omega} \mathcal{L}(x_1, x_2, f, f_{1}, f_{2}, f_{11}, f_{12}, f_{22},

\dots, f_{22\dots 2})\, \mathrm{d}\mathbf{x} \\

& \qquad \quad

f_{i} := \cfrac{\partial f}{\partial x_i} \; , \quad

f_{ij} := \cfrac{\partial^2 f}{\partial x_i\partial x_j} \; , \;\; \dots

\end{align}

then the Euler–Lagrange equation is

:

\begin{align}

\frac{\partial \mathcal{L}}{\partial f}

& - \frac{\partial}{\partial x_1}\left(\frac{\partial \mathcal{L}}{\partial f_{1}}\right)

- \frac{\partial}{\partial x_2}\left(\frac{\partial \mathcal{L}}{\partial f_{2}}\right)

+ \frac{\partial^2}{\partial x_1^2}\left(\frac{\partial \mathcal{L}}{\partial f_{11}}\right)

+ \frac{\partial^2}{\partial x_1\partial x_2}\left(\frac{\partial \mathcal{L}}{\partial f_{12}}\right)

+ \frac{\partial^2}{\partial x_2^2}\left(\frac{\partial \mathcal{L}}{\partial f_{22}}\right) \\

& - \dots

+ (-1)^n \frac{\partial^n}{\partial x_2^n}\left(\frac{\partial \mathcal{L}}{\partial f_{22\dots 2}}\right) = 0

\end{align}

which can be represented shortly as:

:

\frac{\partial \mathcal{L}}{\partial f} +\sum_{j=1}^n \sum_{\mu_1 \leq \ldots \leq \mu_j} (-1)^j \frac{\partial^j}{\partial x_{\mu_{1}}\dots \partial x_{\mu_{j}}} \left( \frac{\partial \mathcal{L} }{\partial f_{\mu_1\dots\mu_j}}\right)=0

wherein \mu_1 \dots \mu_j are indices that span the number of variables, that is, here they go from 1 to 2. Here summation over the \mu_1 \dots \mu_j indices is only over \mu_1 \leq \mu_2 \leq \ldots \leq \mu_j in order to avoid counting the same partial derivative multiple times, for example f_{12} = f_{21} appears only once in the previous equation.

=Several functions of several variables with higher derivatives=

If there are p unknown functions fi to be determined that are dependent on m variables x1 ... xm and if the functional depends on higher derivatives of the fi up to n-th order such that

:

\begin{align}

I[f_1,\ldots,f_p] & = \int_{\Omega} \mathcal{L}(x_1, \ldots, x_m; f_1,\ldots,f_p; f_{1,1},\ldots,

f_{p,m}; f_{1,11},\ldots, f_{p,mm};\ldots; f_{p,1\ldots 1}, \ldots, f_{p,m\ldots m})\, \mathrm{d}\mathbf{x} \\

& \qquad \quad

f_{i,\mu} := \cfrac{\partial f_i}{\partial x_\mu} \; , \quad

f_{i,\mu_1\mu_2} := \cfrac{\partial^2 f_i}{\partial x_{\mu_1}\partial x_{\mu_2}} \; , \;\; \dots

\end{align}

where \mu_1 \dots \mu_j are indices that span the number of variables, that is they go from 1 to m. Then the Euler–Lagrange equation is

:

\frac{\partial \mathcal{L}}{\partial f_i} +\sum_{j=1}^n \sum_{\mu_1 \leq \ldots \leq \mu_j} (-1)^j \frac{\partial^j}{\partial x_{\mu_{1}}\dots \partial x_{\mu_{j}}} \left( \frac{\partial \mathcal{L} }{\partial f_{i,\mu_1\dots\mu_j}}\right)=0

where the summation over the \mu_1 \dots \mu_j is avoiding counting the same derivative f_{i,\mu_1\mu_2} = f_{i,\mu_2\mu_1} several times, just as in the previous subsection. This can be expressed more compactly as

:

\sum_{j=0}^n \sum_{\mu_1 \leq \ldots \leq \mu_j} (-1)^j \partial_{ \mu_{1}\ldots \mu_{j} }^j \left( \frac{\partial \mathcal{L} }{\partial f_{i,\mu_1\dots\mu_j}}\right)=0

=Field theories=

{{Main|Lagrangian (field theory)}}

Generalization to manifolds

Let M be a smooth manifold, and let C^\infty([a,b]) denote the space of smooth functions f\colon [a,b]\to M. Then, for functionals S\colon C^\infty ([a,b])\to \mathbb{R} of the form

:

S[f]=\int_a^b (L\circ\dot{f})(t)\,\mathrm{d} t

where L\colon TM\to\mathbb{R} is the Lagrangian, the statement \mathrm{d} S_f=0 is equivalent to the statement that, for all t\in [a,b], each coordinate frame trivialization (x^i,X^i) of a neighborhood of \dot{f}(t) yields the following \dim M equations:

:

\forall i:\frac{\mathrm{d}}{\mathrm{d}t}\frac{\partial L}{\partial X^i}\bigg|_{\dot{f}(t)}=\frac{\partial L}{\partial x^i}\bigg|_{\dot{f}(t)}.

Euler-Lagrange equations can also be written in a coordinate-free form as {{Cite book |last1=José |last2=Saletan |year=1998 |title=Classical Dynamics: A contemporary approach |url=https://www.cambridge.org/in/academic/subjects/physics/general-and-classical-physics/classical-dynamics-contemporary-approach,%20https://www.cambridge.org/in/academic/subjects/physics/general-and-classical-physics |access-date=2023-09-12 |publisher=Cambridge University Press |language=en |isbn=9780521636360}}

:

\mathcal{L}_\Delta \theta_L=dL

where \theta_L is the canonical momenta 1-form corresponding to the Lagrangian L. The vector field generating time translations is denoted by \Delta and the Lie derivative is denoted by \mathcal{L}. One can use local charts (q^\alpha,\dot{q}^\alpha) in which \theta_L=\frac{\partial L}{\partial \dot{q}^\alpha}dq^\alpha and \Delta:=\frac{d}{dt}=\dot{q}^\alpha\frac{\partial}{\partial q^\alpha}+\ddot{q}^\alpha\frac{\partial}{\partial \dot{q}^\alpha} and use coordinate expressions for the Lie derivative to see equivalence with coordinate expressions of the Euler Lagrange equation. The coordinate free form is particularly suitable for geometrical interpretation of the Euler Lagrange equations.

See also

Notes

{{Reflist}}

References

  • {{springer|title=Lagrange equations (in mechanics)|id=p/l057150}}
  • {{MathWorld|urlname=Euler-LagrangeDifferentialEquation|title=Euler-Lagrange Differential Equation}}
  • {{planetmath| urlname=CalculusOfVariations| title=Calculus of Variations}}
  • {{cite book |last=Gelfand |first=Izrail Moiseevich |author-link=Israel Gelfand |title=Calculus of Variations |publisher=Dover |year=1963 |isbn=0-486-41448-5}}
  • Roubicek, T.: ''[https://web.archive.org/web/20150510023928/http://www.wiley-vch.de/books/sample/3527411887_c17.pdf Calculus of variations]. Chap.17 in: [https://web.archive.org/web/20150510021514/http://www.wiley-vch.de/publish/en/books/forthcomingTitles/MA00/3-527-41188-7/?sID=nrgsqk516u2v9ffab8u7io1dq4 Mathematical Tools for Physicists]. (Ed. M. Grinfeld) J. Wiley, Weinheim, 2014, {{ISBN|978-3-527-41188-7}}, pp. 551–588.

{{Leonhard Euler}}

{{Authority control}}

{{DEFAULTSORT:Euler-Lagrange Equation}}

Category:Eponymous equations of mathematics

Category:Eponymous equations of physics

Category:Ordinary differential equations

Category:Partial differential equations

Category:Calculus of variations

Category:Articles containing proofs

Category:Leonhard Euler