FLEUR

{{Infobox software

| name = FLEUR

| logo =

| logo alt =

| logo caption =

| screenshot =

| screenshot size =

| screenshot alt =

| caption =

| collapsible =

| author =

| developer = [https://www.flapw.de/MaX-6.0/team/ The FLEUR team]

| released =

| discontinued =

| ver layout = simple

| latest release version = MaX-R7.1

| latest release date = {{Start date and age|2024|03|20|df=no}}

| latest preview version =

| latest preview date =

| repo = {{URL|https://iffgit.fz-juelich.de/fleur/fleur}}

| programming language = Fortran

| engine =

| operating system = Linux

| platform =

| included with =

| size =

| language =

| language count =

| language footnote =

| genre =

| license = MIT License

| alexa =

| website = {{URL|https://www.flapw.de}}

| standard =

| AsOf =

}}

The FLEUR code{{Citation |last1=Wortmann |first1=Daniel |last2=Michalicek |first2=Gregor |last3=Baadji |first3=Nadjib |last4=Betzinger |first4=Markus |last5=Bihlmayer |first5=Gustav |last6=Bröder |first6=Jens |last7=Burnus |first7=Tobias |last8=Enkovaara |first8=Jussi |last9=Freimuth |first9=Frank |last10=Friedrich |first10=Christoph |last11=Gerhorst |first11=Christian-Roman |last12=Granberg Cauchi |first12=Sabastian |last13=Grytsiuk |first13=Uliana |last14=Hanke |first14=Andrea |last15=Hanke |first15=Jan-Philipp |last16=Heide |first16=Marcus |last17=Heinze |first17=Stefan |last18=Hilgers |first18=Robin |last19=Janssen |first19=Henning |last20=Klüppelberg |first20=Daniel Aaaron |last21=Kovacik |first21=Roman |last22=Kurz |first22=Philipp |last23=Lezaic |first23=Marjana |last24=Madsen |first24=Georg K. H. |last25=Mokrousov |first25=Yuriy |last26=Neukirchen |first26=Alexander |last27=Redies |first27=Matthias |last28=Rost |first28=Stefan |last29=Schlipf |first29=Martin |last30=Schindlmayr |first30=Arno |last31=Winkelmann |first31=Miriam |last32=Blügel |first32=Stefan |title=FLEUR |date=3 May 2023 |doi=10.5281/zenodo.7576163 |url=https://doi.org/10.5281/zenodo.7576163 |publisher=Zenodo}} (also Fleur or fleur) is an open-source scientific software package for the simulation of material properties of crystalline solids, thin films, and surfaces. It implements Kohn-Sham density functional theory (DFT) in terms of the all-electron full-potential linearized augmented-plane-wave method. With this, it is a realization of one of the most precise DFT methodologies.{{cite journal |last1=Lejaeghere |first1=K. |last2=Bihlmayer |first2=G. |last3=Bjorkman |first3=T. |last4=Blaha |first4=P. |last5=Blugel |first5=S. |last6=Blum |first6=V. |last7=Caliste |first7=D. |last8=Castelli |first8=I. E. |last9=Clark |first9=S. J. |last10=Dal Corso |first10=A. |last11=de Gironcoli |first11=S. |last12=Deutsch |first12=T. |last13=Dewhurst |first13=J. K. |last14=Di Marco |first14=I. |last15=Draxl |first15=C. |last16=Dułak |first16=M. |last17=Eriksson |first17=O. |last18=Flores-Livas |first18=J. A. |last19=Garrity |first19=K. F. |last20=Genovese |first20=L. |last21=Giannozzi |first21=P. |last22=Giantomassi |first22=M. |last23=Goedecker |first23=S. |last24=Gonze |first24=X. |last25=Granas |first25=O. |last26=Gross |first26=E. K. U. |last27=Gulans |first27=A. |last28=Gygi |first28=F. |last29=Hamann |first29=D. R. |last30=Hasnip |first30=P. J. |last31=Holzwarth |first31=N. A. W. |last32=Iuşan |first32=D. |last33=Jochym |first33=D. B. |last34=Jollet |first34=F. |last35=Jones |first35=D. |last36=Kresse |first36=G. |last37=Koepernik |first37=K. |last38=Kucukbenli |first38=E. |last39=Kvashnin |first39=Y. O. |last40=Locht |first40=I. L. M. |last41=Lubeck |first41=S. |last42=Marsman |first42=M. |last43=Marzari |first43=N. |last44=Nitzsche |first44=U. |last45=Nordstrom |first45=L. |last46=Ozaki |first46=T. |last47=Paulatto |first47=L. |last48=Pickard |first48=C. J. |last49=Poelmans |first49=W. |last50=Probert |first50=M. I. J. |last51=Refson |first51=K. |last52=Richter |first52=M. |last53=Rignanese |first53=G.-M. |last54=Saha |first54=S. |last55=Scheffler |first55=M. |last56=Schlipf |first56=M. |last57=Schwarz |first57=K. |last58=Sharma |first58=S. |last59=Tavazza |first59=F. |last60=Thunstrom |first60=P. |last61=Tkatchenko |first61=A. |last62=Torrent |first62=M. |last63=Vanderbilt |first63=D. |last64=van Setten |first64=M. J. |last65=Van Speybroeck |first65=V. |last66=Wills |first66=J. M. |last67=Yates |first67=J. R. |last68=Zhang |first68=G.-X. |last69=Cottenier |first69=S. |title=Reproducibility in density functional theory calculations of solids |journal=Science |date=25 March 2016 |volume=351 |issue=6280 |pages=aad3000 |doi=10.1126/science.aad3000|pmid=27013736 |bibcode=2016Sci...351.....L |s2cid=206642768 |hdl=1854/LU-7191263 |url=https://biblio.ugent.be/publication/7191263 |hdl-access=free }} The code has the common features of a modern DFT simulation package. In the past, major applications have been in the field of magnetism, spintronics, quantum materials, e.g. in ultrathin films,{{cite journal |last1=Bode |first1=M. |last2=Heide |first2=M. |last3=von Bergmann |first3=K. |last4=Ferriani |first4=P. |last5=Heinze |first5=S. |last6=Bihlmayer |first6=G. |last7=Kubetzka |first7=A. |last8=Pietzsch |first8=O. |last9=Blügel |first9=S. |last10=Wiesendanger |first10=R. |title=Chiral magnetic order at surfaces driven by inversion asymmetry |journal=Nature |date=May 2007 |volume=447 |issue=7141 |pages=190–193 |doi=10.1038/nature05802|pmid=17495922 |bibcode=2007Natur.447..190B |s2cid=4421433 }} complex magnetism like in spin spirals or magnetic Skyrmion lattices,{{cite journal |last1=Heinze |first1=Stefan |last2=von Bergmann |first2=Kirsten |last3=Menzel |first3=Matthias |last4=Brede |first4=Jens |last5=Kubetzka |first5=André |last6=Wiesendanger |first6=Roland |last7=Bihlmayer |first7=Gustav |last8=Blügel |first8=Stefan |title=Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions |journal=Nature Physics |date=September 2011 |volume=7 |issue=9 |pages=713–718 |doi=10.1038/nphys2045|bibcode=2011NatPh...7..713H }} and in spin-orbit related physics, e.g. in graphene{{cite journal |last1=Han |first1=Wei |last2=Kawakami |first2=Roland K. |last3=Gmitra |first3=Martin |last4=Fabian |first4=Jaroslav |title=Graphene spintronics |journal=Nature Nanotechnology |date=October 2014 |volume=9 |issue=10 |pages=794–807 |doi=10.1038/nnano.2014.214|pmid=25286274 |arxiv=1503.02743 |bibcode=2014NatNa...9..794H |s2cid=3009069 }} and topological insulators.{{cite journal |last1=Eremeev |first1=Sergey V. |last2=Landolt |first2=Gabriel |last3=Menshchikova |first3=Tatiana V. |last4=Slomski |first4=Bartosz |last5=Koroteev |first5=Yury M. |last6=Aliev |first6=Ziya S. |last7=Babanly |first7=Mahammad B. |last8=Henk |first8=Jürgen |last9=Ernst |first9=Arthur |last10=Patthey |first10=Luc |last11=Eich |first11=Andreas |last12=Khajetoorians |first12=Alexander Ako |last13=Hagemeister |first13=Julian |last14=Pietzsch |first14=Oswald |last15=Wiebe |first15=Jens |last16=Wiesendanger |first16=Roland |last17=Echenique |first17=Pedro M. |last18=Tsirkin |first18=Stepan S. |last19=Amiraslanov |first19=Imamaddin R. |last20=Dil |first20=J. Hugo |last21=Chulkov |first21=Evgueni V. |title=Atom-specific spin mapping and buried topological states in a homologous series of topological insulators |journal=Nature Communications |date=January 2012 |volume=3 |issue=1 |pages=635 |doi=10.1038/ncomms1638|pmid=22273673 |bibcode=2012NatCo...3..635E |s2cid=20501596 |doi-access=free }}

Simulation model

The physical model used in Fleur simulations is based on the (F)LAPW(+LO) method, but it is also possible to make use of an APW+lo description. The calculations employ the scalar-relativistic approximation for the kinetic energy operator.{{cite journal |last1=Koelling |first1=D D |last2=Harmon |first2=B N |title=A technique for relativistic spin-polarised calculations |journal=Journal of Physics C: Solid State Physics |date=28 August 1977 |volume=10 |issue=16 |pages=3107–3114 |doi=10.1088/0022-3719/10/16/019|bibcode=1977JPhC...10.3107K }}{{cite journal |last1=Takeda |first1=T. |title=The scalar relativistic approximation |journal=Zeitschrift für Physik B |date=March 1978 |volume=32 |issue=1 |pages=43–48 |doi=10.1007/BF01322185|bibcode=1978ZPhyB..32...43T |s2cid=120097976 }} Spin-orbit coupling can optionally be included.{{cite journal |last1=MacDonald |first1=A H |last2=Picket |first2=W E |last3=Koelling |first3=D D |title=A linearised relativistic augmented-plane-wave method utilising approximate pure spin basis functions |journal=Journal of Physics C: Solid State Physics |date=20 May 1980 |volume=13 |issue=14 |pages=2675–2683 |doi=10.1088/0022-3719/13/14/009|bibcode=1980JPhC...13.2675M }} It is possible to describe noncollinear magnetic structures periodic in the unit cell.{{cite journal |last1=Kurz |first1=Ph. |last2=Förster |first2=F. |last3=Nordström |first3=L. |last4=Bihlmayer |first4=G. |last5=Blügel |first5=S. |title=Ab initio treatment of noncollinear magnets with the full-potential linearized augmented plane wave method |journal=Physical Review B |date=January 2004 |volume=69 |issue=2 |pages=024415 |doi=10.1103/PhysRevB.69.024415|bibcode=2004PhRvB..69b4415K |url=http://juser.fz-juelich.de/record/35286/files/42206.pdf }} The description of spin spirals with deviating periodicity is based on the generalized Bloch theorem.{{cite journal |last1=Heide |first1=M. |last2=Bihlmayer |first2=G. |last3=Blügel |first3=S. |title=Describing Dzyaloshinskii–Moriya spirals from first principles |journal=Physica B: Condensed Matter |date=October 2009 |volume=404 |issue=18 |pages=2678–2683 |doi=10.1016/j.physb.2009.06.070|bibcode=2009PhyB..404.2678H }} The code offers native support for the description of three-dimensional periodic structures, i.e., bulk crystals, as well as two-dimensional periodic structures like thin films and surfaces.{{cite journal |last1=Krakauer |first1=H. |last2=Posternak |first2=M. |last3=Freeman |first3=A. J. |title=Linearized augmented plane-wave method for the electronic band structure of thin films |journal=Physical Review B |date=15 February 1979 |volume=19 |issue=4 |pages=1706–1719 |doi=10.1103/PhysRevB.19.1706|bibcode=1979PhRvB..19.1706K }} For the description of the exchange-correlation functional different parametrizations for the local density approximation, several generalized-gradient approximations, Hybrid functionals,{{cite journal |last1=Betzinger |first1=Markus |last2=Friedrich |first2=Christoph |last3=Blügel |first3=Stefan |title=Hybrid functionals within the all-electron FLAPW method: Implementation and applications of PBE0 |journal=Physical Review B |date=24 May 2010 |volume=81 |issue=19 |pages=195117 |doi=10.1103/PhysRevB.81.195117|arxiv=1003.0524 |bibcode=2010PhRvB..81s5117B |s2cid=119271848 }} and partial support for the [https://www.tddft.org/programs/libxc/ libXC] library are implemented. It is also possible to make use of a DFT+U description.{{cite journal |last1=Shick |first1=A. B. |last2=Liechtenstein |first2=A. I. |last3=Pickett |first3=W. E. |title=Implementation of the LDA+U method using the full-potential linearized augmented plane-wave basis |journal=Physical Review B |date=15 October 1999 |volume=60 |issue=15 |pages=10763–10769 |doi=10.1103/PhysRevB.60.10763|arxiv=cond-mat/9903439 |bibcode=1999PhRvB..6010763S |s2cid=119508105 }}

Features

The Fleur code can be used to directly calculate many different material properties. Among these are:

  • The total energy{{cite journal |last1=Weinert |first1=M. |last2=Wimmer |first2=E. |last3=Freeman |first3=A. J. |title=Total-energy all-electron density functional method for bulk solids and surfaces |journal=Physical Review B |date=15 October 1982 |volume=26 |issue=8 |pages=4571–4578 |doi=10.1103/PhysRevB.26.4571|bibcode=1982PhRvB..26.4571W }}
  • Forces on atoms{{cite journal |last1=Yu |first1=Rici |last2=Singh |first2=D. |last3=Krakauer |first3=H. |title=All-electron and pseudopotential force calculations using the linearized-augmented-plane-wave method |journal=Physical Review B |date=15 March 1991 |volume=43 |issue=8 |pages=6411–6422 |doi=10.1103/PhysRevB.43.6411|pmid=9998079 |bibcode=1991PhRvB..43.6411Y }}{{cite journal |last1=Klüppelberg |first1=Daniel A. |last2=Betzinger |first2=Markus |last3=Blügel |first3=Stefan |title=Atomic force calculations within the all-electron FLAPW method: Treatment of core states and discontinuities at the muffin-tin sphere boundary |journal=Physical Review B |date=5 January 2015 |volume=91 |issue=3 |pages=035105 |doi=10.1103/PhysRevB.91.035105|bibcode=2015PhRvB..91c5105K }}
  • Density of states (including projections onto individual atoms and orbitals characters)
  • Band structures (including projections onto individual atoms and orbitals characters and band unfolding)
  • Charges, magnetic moments, and orbital moments at individual atoms
  • Electric multipole moments and magnetic dipole moments
  • Heisenberg interaction parameters (via the magnetic force theorem or via comparing different magnetic structures)
  • Magnetocrystalline anisotropy energy (via the magnetic force theorem or via comparing different magnetic structures)
  • Dzyaloshinskii-Moriya interaction parameters (via the magnetic force theorem or via comparing different magnetic structures)
  • Spin-spiral dispersion relations (via the magnetic force theorem or via comparing different magnetic structures)
  • EELS spectra
  • Magnetic circular dichroism spectra
  • The Work function for surfaces

For the calculation of optical properties Fleur can be combined with the Spex code to perform calculations employing the GW approximation to many-body perturbation theory.{{cite journal |last1=Friedrich |first1=Christoph |last2=Blügel |first2=Stefan |last3=Schindlmayr |first3=Arno |title=Efficient implementation of the G W approximation within the all-electron FLAPW method |journal=Physical Review B |date=3 March 2010 |volume=81 |issue=12 |pages=125102 |doi=10.1103/PhysRevB.81.125102|arxiv=1003.0316 |bibcode=2010PhRvB..81l5102F |s2cid=43385321 }} Together with the Wannier90 library it is also possible to extract the Kohn-Sham eigenfunctions in terms of Wannier functions.{{cite journal |last1=Freimuth |first1=F. |last2=Mokrousov |first2=Y. |last3=Wortmann |first3=D. |last4=Heinze |first4=S. |last5=Blügel |first5=S. |title=Maximally localized Wannier functions within the FLAPW formalism |journal=Physical Review B |date=17 July 2008 |volume=78 |issue=3 |pages=035120 |doi=10.1103/PhysRevB.78.035120|arxiv=0806.3213 |bibcode=2008PhRvB..78c5120F |s2cid=53133273 }}

See also

References

{{reflist}}