Faltings's theorem

{{Short description|Curves of genus > 1 over the rationals have only finitely many rational points}}

{{Infobox mathematical statement

| name = Faltings's theorem

| image = Gerd Faltings MFO.jpg

| caption = Gerd Faltings

| field = Arithmetic geometry

| conjectured by = Louis Mordell

| conjecture date = 1922

| first proof by = Gerd Faltings

| first proof date = 1983

| open problem =

| known cases =

| implied by =

| equivalent to =

| generalizations = Bombieri–Lang conjecture
Mordell–Lang conjecture

| consequences = Siegel's theorem on integral points

}}

Faltings's theorem is a result in arithmetic geometry, according to which a curve of genus greater than 1 over the field \mathbb{Q} of rational numbers has only finitely many rational points. This was conjectured in 1922 by Louis Mordell,{{sfn|Mordell|1922}} and known as the Mordell conjecture until its 1983 proof by Gerd Faltings.{{sfnm|1a1=Faltings|2a1=Faltings|1y=1983|2y=1984}} The conjecture was later generalized by replacing \mathbb{Q} by any number field.

Background

Let C be a non-singular algebraic curve of genus g over \mathbb{Q}. Then the set of rational points on C may be determined as follows:

Proofs

Igor Shafarevich conjectured that there are only finitely many isomorphism classes of abelian varieties of fixed dimension and fixed polarization degree over a fixed number field with good reduction outside a fixed finite set of places.{{sfn|Shafarevich|1963}} Aleksei Parshin showed that Shafarevich's finiteness conjecture would imply the Mordell conjecture, using what is now called Parshin's trick.{{sfn|Parshin|1968}}

Gerd Faltings proved Shafarevich's finiteness conjecture using a known reduction to a case of the Tate conjecture, together with tools from algebraic geometry, including the theory of Néron models.{{sfn|Faltings|1983}} The main idea of Faltings's proof is the comparison of Faltings heights and naive heights via Siegel modular varieties.{{efn|"Faltings relates the two notions of height by means of the Siegel moduli space.... It is the main idea of the proof." {{cite journal |last=Bloch |first=Spencer |s2cid=306251 |author-link=Spencer Bloch |page=44 |title=The Proof of the Mordell Conjecture |journal=The Mathematical Intelligencer |volume=6 |issue=2 |year=1984|doi=10.1007/BF03024155 }}}}

=Later proofs=

Consequences

Faltings's 1983 paper had as consequences a number of statements which had previously been conjectured:

  • The Mordell conjecture that a curve of genus greater than 1 over a number field has only finitely many rational points;
  • The Isogeny theorem that abelian varieties with isomorphic Tate modules (as \mathbb{Q}_{\ell}-modules with Galois action) are isogenous.

A sample application of Faltings's theorem is to a weak form of Fermat's Last Theorem: for any fixed n\ge 4 there are at most finitely many primitive integer solutions (pairwise coprime solutions) to a^n+b^n=c^n, since for such n the Fermat curve x^n+y^n=1 has genus greater than 1.

Generalizations

Because of the Mordell–Weil theorem, Faltings's theorem can be reformulated as a statement about the intersection of a curve C with a finitely generated subgroup \Gamma of an abelian variety A. Generalizing by replacing A by a semiabelian variety, C by an arbitrary subvariety of A, and \Gamma by an arbitrary finite-rank subgroup of A leads to the Mordell–Lang conjecture, which was proved in 1995 by McQuillan{{sfn|McQuillan|1995}} following work of Laurent, Raynaud, Hindry, Vojta, and Faltings.

Another higher-dimensional generalization of Faltings's theorem is the Bombieri–Lang conjecture that if X is a pseudo-canonical variety (i.e., a variety of general type) over a number field k, then X(k) is not Zariski dense in X. Even more general conjectures have been put forth by Paul Vojta.

The Mordell conjecture for function fields was proved by Yuri Ivanovich Manin{{sfn|Manin|1963}} and by Hans Grauert.{{sfn|Grauert|1965}} In 1990, Robert F. Coleman found and fixed a gap in Manin's proof.{{sfn|Coleman|1990}}

Notes

{{notelist}}

Citations

{{reflist}}

References

{{refbegin|2}}

  • {{cite journal | last=Bombieri | first=Enrico | author-link1=Enrico Bombieri |year=1990|title=The Mordell conjecture revisited| journal=Ann. Scuola Norm. Sup. Pisa Cl. Sci.|volume=17| issue=4| pages=615–640 | mr=1093712 | url=http://www.numdam.org/item?id=ASNSP_1990_4_17_4_615_0 }}
  • {{Cite journal | last1=Coleman | first1=Robert F. | author-link1=Robert F. Coleman | year=1990 | title=Manin's proof of the Mordell conjecture over function fields | url=https://www.e-periodica.ch/digbib/view?pid=ens-001:1990:36#560 | journal=L'Enseignement Mathématique |series=2e Série | issn=0013-8584 | volume=36 | issue=3 | pages=393–427 | mr=1096426 }}
  • {{cite book|title=Arithmetic geometry. Papers from the conference held at the University of Connecticut, Storrs, Connecticut, July 30 – August 10, 1984 |editor1-last=Cornell | editor1-first=Gary | editor2-link=Joseph Hillel Silverman| editor2-last=Silverman | editor2-first=Joseph H. |year=1986 |publisher=Springer-Verlag |location= New York |isbn=0-387-96311-1 | doi=10.1007/978-1-4613-8655-1 | mr=861969}} → Contains an English translation of {{harvtxt|Faltings|1983}}
  • {{cite journal |author-link=Gerd Faltings| last=Faltings |first=Gerd |year=1983 |title=Endlichkeitssätze für abelsche Varietäten über Zahlkörpern |journal=Inventiones Mathematicae |volume=73 |issue=3 |pages=349–366 |doi=10.1007/BF01388432 | bibcode=1983InMat..73..349F | mr=0718935 | trans-title=Finiteness theorems for abelian varieties over number fields | language=de }}
  • {{cite journal |last=Faltings |first=Gerd |year=1984 |title=Erratum: Endlichkeitssätze für abelsche Varietäten über Zahlkörpern |journal=Inventiones Mathematicae |volume=75 |issue=2 |pages=381 |doi=10.1007/BF01388572 | mr=0732554 | language=de |doi-access=free }}
  • {{cite journal | last=Faltings | first=Gerd | year=1991 | title=Diophantine approximation on abelian varieties | journal=Ann. of Math. | volume=133 | issue=3 | pages=549–576 | doi=10.2307/2944319 | jstor=2944319 | mr=1109353 }}
  • {{cite encyclopedia | last=Faltings | first=Gerd | year=1994 | chapter=The general case of S. Lang's conjecture | title=Barsotti Symposium in Algebraic Geometry. Papers from the symposium held in Abano Terme, June 24–27, 1991. | editor1-first=Valentino | editor1-last=Cristante | editor2-first=William | editor2-last=Messing | isbn=0-12-197270-4 | series=Perspectives in Mathematics | publisher=Academic Press, Inc. | location=San Diego, CA | mr=1307396 }}
  • {{Cite journal | author-link1=Hans Grauert|last1=Grauert | first1=Hans | title=Mordells Vermutung über rationale Punkte auf algebraischen Kurven und Funktionenkörper | url=http://www.numdam.org/item?id=PMIHES_1965__25__131_0 | year=1965 | journal=Publications Mathématiques de l'IHÉS |volume=25 | issn=1618-1913 | issue=25 | pages=131–149 |doi=10.1007/BF02684399 | mr=0222087 }}
  • {{cite book | title=Diophantine geometry | first1=Marc | last1=Hindry |last2=Silverman | first2=Joseph H. | series= Graduate Texts in Mathematics | volume=201 | publisher=Springer-Verlag | year=2000 | isbn=0-387-98981-1 | mr=1745599 | doi=10.1007/978-1-4612-1210-2 | location=New York}} → Gives Vojta's proof of Faltings's Theorem.
  • {{cite book | first=Serge | last=Lang | author-link=Serge Lang | title=Survey of Diophantine geometry | url=https://archive.org/details/surveydiophantin00lang_347 | url-access=limited | publisher=Springer-Verlag | year=1997 | isbn=3-540-61223-8 | pages=[https://archive.org/details/surveydiophantin00lang_347/page/n114 101]–122 }}
  • {{cite journal |last1=Lawrence |first1=Brian |last2=Venkatesh |first2=Akshay |title=Diophantine problems and {{mvar|p}}-adic period mappings |journal=Invent. Math. |date=2020 |volume=221 |issue=3 |pages=893–999 |doi=10.1007/s00222-020-00966-7|arxiv=1807.02721 |bibcode=2020InMat.221..893L }}
  • {{Cite journal | author-link1=Yuri Ivanovich Manin | last1=Manin | first1=Ju. I. | title=Rational points on algebraic curves over function fields | url=http://mi.mathnet.ru/eng/izv3174 | year=1963 | language=ru | journal=Izvestiya Akademii Nauk SSSR. Seriya Matematicheskaya | issn=0373-2436 | volume=27 | pages=1395–1440 | mr=0157971 }} (Translation: {{Cite journal | last1=Manin | first1=Yu. | title=Rational points on algebraic curves over function fields | journal=American Mathematical Society Translations |series=Series 2 | issn= 0065-9290 | volume=59 | year=1966 | pages=189–234 | doi=10.1090/trans2/050/11 | isbn=9780821817506 }} )
  • {{cite journal |last1=McQuillan |first1=Michael |title=Division points on semi-abelian varieties |journal=Invent. Math. |date=1995 |volume=120 |issue=1 |pages=143–159 |doi=10.1007/BF01241125|bibcode=1995InMat.120..143M }}
  • {{Cite journal | author-link1=Louis J. Mordell | last1=Mordell | first1=Louis J. | title=On the rational solutions of the indeterminate equation of the third and fourth degrees | year=1922 | journal=Proc. Cambridge Philos. Soc. | volume=21 | pages=179–192 | url=https://archive.org/stream/proceedingscambr21camb#page/n0/mode/2up }}
  • {{Cite conference | author1-link=Aleksei Nikolaevich Parshin | last1=Paršin | first1=A. N. | book-title=Actes du Congrès International des Mathématiciens | location=Nice | year=1970 | volume=Tome 1 | publisher=Gauthier-Villars | publication-date=1971 | title=Quelques conjectures de finitude en géométrie diophantienne | pages=467–471 | url=http://www.mathunion.org/ICM/ICM1970.1/Main/icm1970.1.0467.0472.ocr.pdf | mr=0427323 | access-date=2016-06-11 | archive-url=https://web.archive.org/web/20160924235505/http://www.mathunion.org/ICM/ICM1970.1/Main/icm1970.1.0467.0472.ocr.pdf | archive-date=2016-09-24 | url-status=dead }}
  • {{eom|id=M/m064910|first=A. N. |last=Parshin |title=Mordell conjecture|mode=cs1}}
  • {{cite journal|title=Algebraic curves over function fields I|last=Parshin|first=A. N.|author-link=Aleksei Parshin|journal=Izv. Akad. Nauk SSSR Ser. Mat.|volume=32|year=1968|issue=5|pages=1191–1219|doi=10.1070/IM1968v002n05ABEH000723|bibcode=1968IzMat...2.1145P}}
  • {{cite journal|title=Algebraic number fields|last=Shafarevich|first=I. R.|author-link=Igor Shafarevich|journal=Proceedings of the International Congress of Mathematicians|year=1963|pages=163–176}}
  • {{cite journal | last=Vojta | first=Paul | author-link=Paul Vojta | title=Siegel's theorem in the compact case | journal=Ann. of Math. | year=1991 | volume=133 | issue=3 | pages=509–548 | mr=1109352 | doi=10.2307/2944318 | jstor=2944318 }}

{{refend}}

{{Algebraic curves navbox}}

{{Authority control}}

Category:Diophantine geometry

Category:Theorems in number theory

Category:Theorems in algebraic geometry