Fractal curve
{{Short description|Mathematical curve whose shape is a fractal}}
A fractal curve is, loosely, a mathematical curve whose shape retains the same general pattern of irregularity, regardless of how high it is magnified, that is, its graph takes the form of a fractal.{{Cite web |title=Geometric and topological recreations |url=https://www.britannica.com/topic/number-game/Geometric-and-topological-recreations#ref396163}} In general, fractal curves are nowhere rectifiable curves — that is, they do not have finite length — and every subarc longer than a single point has infinite length.{{Cite web |title=Fractal Curves |url=https://www.whitman.edu/Documents/Academics/Mathematics/ritzenmc.pdf |last=Ritzenthaler |first=Chella}}
A famous example is the boundary of the Mandelbrot set.
Fractal curves in nature
Fractal curves and fractal patterns are widespread, in nature, found in such places as broccoli, snowflakes, feet of geckos, frost crystals, and lightning bolts.{{cite magazine |title=Earth's Most Stunning Natural Fractal Patterns| magazine=Wired | url=https://www.wired.com/2010/09/fractal-patterns-in-nature/ | publisher=wired.com | accessdate=17 May 2020| last1=McNally | first1=Jess }}{{Cite web |title=8 Stunning Fractals Found in Nature |url=http://thescienceexplorer.com/nature/8-stunning-fractals-found-nature |last=Tennenhouse |first=Erica |date=July 5, 2016}}{{Cite web |title=Fractal patterns in nature and art are aesthetically pleasing and stress-reducing |url=https://theconversation.com/fractal-patterns-in-nature-and-art-are-aesthetically-pleasing-and-stress-reducing-73255 |last=LaMonica |first=Martin |date=March 30, 2017}}{{Cite web |title=14 amazing fractals found in nature |url=https://www.mnn.com/earth-matters/wilderness-resources/blogs/14-amazing-fractals-found-in-nature |last=Gunther |first=Shea |date=April 24, 2013 |access-date=2020-05-17}}
See also Romanesco broccoli, dendrite crystal, trees, fractals, Hofstadter's butterfly, Lichtenberg figure, and self-organized criticality.
Dimensions of a fractal curve
Most of us are used to mathematical curves having dimension one, but as a general rule, fractal curves have different dimensions,{{Cite web |title=Fractal Curves and Dimension |url=https://www.cut-the-knot.org/do_you_know/dimension.shtml |last=Bogomolny |first=Alexander |website=cut-the-knot}} also see fractal dimension and list of fractals by Hausdorff dimension.
Relationships of fractal curves to other fields
Starting in the 1950s Benoit Mandelbrot and others have studied self-similarity of fractal curves, and have applied theory of fractals to modelling natural phenomena. Self-similarity occurs, and analysis of these patterns has found fractal curves in such diverse fields as economics, fluid mechanics, geomorphology, human physiology and linguistics.
As examples, "landscapes" revealed by microscopic views of surfaces in connection with Brownian motion, vascular networks, and shapes of polymer molecules all relate to fractal curves.
Examples
{{div col}}
- Blancmange curve
- Coastline paradox
- De Rham curve
- Dragon curve
- Fibonacci word fractal
- Koch snowflake
- Boundary of the Mandelbrot set
- Menger sponge
- Peano curve
- Sierpiński triangle
- Weierstrass function
{{div col end}}
See also
References
{{Reflist}}
External links
- [https://demonstrations.wolfram.com/FractalCurves/ Wolfram math on fractal curves]
- [https://fractalfoundation.org/ The Fractal Foundation's homepage]
- [http://www.fractalcurves.com/ fractalcurves.com]
- [https://www.khanacademy.org/math/geometry-home/geometry-volume-surface-area/koch-snowflake/v/koch-snowflake-fractal Making a Kock Snowflake, from Khan Academy]
- [https://www.khanacademy.org/math/geometry-home/geometry-volume-surface-area/koch-snowflake/v/area-of-koch-snowflake-part-1-advanced Area of a Koch Snowflake, from Khan Academy]
- [https://www.youtube.com/watch?v=RU0wScIj36o Youtube on space-filling curves]
- [https://www.youtube.com/watch?v=UBuPWdSbyf8 Youtube on the Dragon Curve]
{{Fractals}}