GPS Block III

{{short description|Current generation of GPS satellites}}

{{Use American English|date=September 2020}}

{{Use dmy dates|date=October 2024}}

{{Infobox spacecraft class

| name = GPS Block III

| image = GPS Block IIIA.jpg

| caption = Artist's impression of a GPS Block III satellite in orbit

| image_upright = 0.9

| country = United States

| bus = Lockheed Martin A2100M

| applications = Navigation satellite

| manufacturer = Lockheed Martin

| orbits = Semi-synchronous Medium Earth orbit

| operator = US Space Force

| lifetime = 15 years (planned)

| derivedfrom = GPS Block IIF

| Preceded = GPS Block IIF

| Succeeded = GPS Block IIIF

| status = Production complete

| built = 10{{Cite web |date=18 January 2023 |title=Sixth GPS III Satellite Built By Lockheed Martin Launches As Part Of Constellation Modernization |url=https://news.lockheedmartin.com/2023-01-18-Sixth-GPS-III-Satellite-Built-by-Lockheed-Martin-Launches-As-Part-of-Constellation-Modernization,1 |access-date=31 January 2023 |website=Lockheed Martin |language=en-US}}

| orders =

| launched = 8

| operational = 7{{Cite web |title=GPS Constellation Status |url=https://www.navcen.uscg.gov/gps-constellation |access-date=30 May 2025}}

| retired =

| failed =

| lost =

| first = 23 December 2018{{Cite news |last=Clark |first=Stephen |date=23 December 2018 |title=SpaceX closes out year with successful GPS satellite launch |url=https://spaceflightnow.com/2018/12/23/spacex-closes-out-year-with-successful-gps-satellite-launch/ |access-date=24 December 2018 |publisher=Spaceflight Now}}

| last = 30 May 2025

| lastretired =

| launch_mass = {{cvt|3880|kg}}{{Cite web |title=GPS III fact sheet |url=http://www.lockheedmartin.com/content/dam/lockheed/data/space/documents/gps/GPS-III-Fact-Sheet-2014.pdf |url-status=dead |archive-url=https://web.archive.org/web/20150906010446/http://www.lockheedmartin.com/content/dam/lockheed/data/space/documents/gps/GPS-III-Fact-Sheet-2014.pdf |archive-date=6 September 2015 |access-date=6 May 2016 |publisher=LockheedMartin}}

| dry_mass = {{cvt|2269|kg}}

| power = 4480 watts (end of life)

| batteries = Nickel–hydrogen battery

| equipment =

| dimensions =

}}

GPS Block III (previously Block IIIA) consists of the first ten GPS III satellites, which are used to keep the Navstar Global Positioning System operational. Lockheed Martin designed, developed and manufactured the GPS III Non-Flight Satellite Testbed (GNST) and all ten Block III satellites.[http://www.lockheedmartin.com/us/news/press-releases/2013/february/u-s--air-force-awards-lockheed-martin-contract-to-begin-work-on-.html "U.S. Air Force Awards Lockheed Martin Contracts to Begin Work on Next Set of GPS III Satellites"] (Press release) Lockheed Martin 25 February 2013 The first satellite in the series was launched in December 2018.{{Cite web |last=Whitney |first=Steven |date=1 December 2017 |title=Directions 2018: The GPS year in review |url=http://gpsworld.com/directions-2018-the-gps-year-in-review/ |access-date=2 December 2017 |publisher=GPS World}}{{Cite web |last=Brissett |first=Wilson |date=7 November 2017 |title=SMC Releases Draft RFP for Five EELV Launches |url=http://www.airforcemag.com/Features/Pages/2017/November%202017/SMC-Releases-Draft-RFP-for-Five-EELV-Launches.aspx |access-date=13 December 2017 |website=Air Force Association |publisher=Air Force Magazine}}{{Cite web |date=December 2017 |title=Global Positioning System: Better Planning and Coordination Needed to Improve Prospects for Fielding Modernized Capability |url=https://www.gao.gov/assets/690/689022.pdf |access-date=18 December 2017 |publisher=US Government Accountability Office (GAO)}} {{PD-notice}}

History

The United States' Global Positioning System (GPS) reached Full Operational Capability on 17 July 1995,{{Cite web |last=U.S. Coast Guard Navigation Center |title=GPS FAQ |url=http://www.navcen.uscg.gov/?pageName=gpsFaq |publisher=U.S. Department of Homeland Security}} {{PD-notice}} completing its original design goals. Advances in technology and new demands on the existing system led to the effort to modernize the GPS system. In 2000, the U.S. Congress authorized the effort, referred to as GPS III.

The project involves new ground stations and new satellites, with additional navigation signals for both civilian and military users, and aims to improve the accuracy and availability for all users.

Raytheon was awarded the Next Generation GPS Operational Control System (OCX) contract on 25 February 2010.{{Cite web |date=1 March 2010 |title=Raytheon Awarded $886 Million GPS OCX Contract |url=https://www.satellitetoday.com/government-military/2010/03/01/raytheon-awarded-886-million-gps-ocx-contract/ |access-date=5 December 2022 |publisher=Via Satellite}}

The first satellite in the series was projected to launch in 2014,[http://www.lockheedmartin.com/us/news/press-releases/2012/may/0531-ss-gpsIII.html "U.S. Air Force Awards Lockheed Martin GPS III Flight Operations Contract"] (Press release) Lockheed Martin 31 May 2012 but significant delays{{Cite web |date=15 September 2016 |title=GPS III satellite delivery slips because of capacitor |url=http://gpsworld.com/gps-iii-satellite-delivery-slips-because-of-capacitor/ |access-date=25 December 2016 |publisher=GPS World}} pushed the launch to December 2018.{{Cite web |last=Gleckel |first=Gerry |date=15 November 2017 |title=GPS Status and Modernization Program |url=https://www.gps.gov/governance/advisory/meetings/2017-11/gleckel.pdf |access-date=1 December 2017 |website=gps.gov |publisher=U.S. Air Force}} {{PD-notice}} The tenth and final GPS Block III launch is projected in FY2026.{{Cite web |date=16 November 2022 |title=Military Communications & Positioning, Navigation, and Timing Overview & GPS Enterprise Update |url=https://www.gps.gov/governance/advisory/meetings/2022-11/baker.pdf |access-date=21 January 2023 |publisher=U.S. Space Force Space Systems Command}}

Development

File:GPS III.jpg

Block III satellites use Lockheed Martin's A2100M satellite bus structure. The propellant and pressurant tanks are manufactured by Orbital ATK from lightweight, high-strength composite materials.{{Cite web |title=Lockheed Orders GPS 3A Satellite Buses from ATK |url=http://www.spacenews.com/contracts/100412-lockheed-orders-gps-satellite-buses.html |url-status=dead |archive-url=https://archive.today/20130202154349/http://www.spacenews.com/contracts/100412-lockheed-orders-gps-satellite-buses.html |archive-date=2 February 2013}} Each satellite will carry eight deployable JIB antennas designed and manufactured by Northrop Grumman Astro Aerospace{{Cite web |title=Northrop Grumman Corporation: News and Events – News Release |url=http://investor.northropgrumman.com/phoenix.zhtml |url-status=dead |archive-url=https://archive.today/20140404173437/http://investor.northropgrumman.com/phoenix.zhtml?c=112386&p=irol-newsArticle&ID=1908334&highlight= |archive-date=4 April 2014}}

Already delayed significantly beyond the first satellite's planned 2014 launch, on 27 April 2016, SpaceX, in Hawthorne, California, was awarded a US$82.7 million firm-fixed-price contract for launch services to deliver a GPS III satellite to its intended orbit. The contract included launch vehicle production, mission integration, and launch operations for a GPS III mission, to be performed in Hawthorne, California; Cape Canaveral Air Force Station, Florida; and McGregor, Texas.{{Cite web |title=Contracts for April 27, 2016 |url=https://www.defense.gov/News/Contracts/Contract/Article/744434/ |publisher=U.S. Department of Defense}} {{PD-notice}} In December 2016, the Director of the U.S. Air Force's Global Positioning Systems Directorate announced the first satellite would launch in the spring of 2018.{{Cite web |last=Whitney |first=Steven |date=2 December 2016 |title=Directions 2017: GPS navigates the future |url=http://gpsworld.com/2016-in-review-gps-navigates-the-future/ |access-date=3 December 2017 |website=gpsworld.com |publisher=North Coast Media LLC}} In March 2017, the U.S. General Accounting Office stated "Technical issues with both the GPS III satellite and the OCX Block 0 launch control and checkout system have combined to place the planned March 2018 launch date for the first GPS III satellite at risk".{{Cite web |date=March 2017 |title=Assessments of Selected Weapon Programs |url=https://www.gao.gov/assets/690/683838.pdf |access-date=20 June 2017 |publisher=US General Accounting Office}} {{PD-notice}} The delays were caused by a number of factors, primarily due to issues found in the navigation payload.{{Cite web |title=US Air Force 'not happy' with delays on Lockheed GPS satellite – the Economic Times |url=http://economictimes.indiatimes.com/news/international/world-news/us-air-force-not-happy-with-delays-on-lockheed-gps-satellite/articleshow/35465485.cms |url-status=dead |archive-url=https://web.archive.org/web/20140525141625/http://economictimes.indiatimes.com/news/international/world-news/us-air-force-not-happy-with-delays-on-lockheed-gps-satellite/articleshow/35465485.cms |archive-date=25 May 2014 |access-date=13 January 2022 |website=economictimes.indiatimes.com}} Further launch date slippages were caused by the need for additional testing and validation of a SpaceX Falcon 9 rocket which ultimately launched the satellite on 23 December 2018.{{Cite news |last=Clark |first=Stephen |date=17 December 2018 |title=Air Force requirements will keep SpaceX from landing Falcon 9 booster after GPS launch |url=https://spaceflightnow.com/2018/12/17/air-force-requirements-will-keep-spacex-from-recovering-falcon-9-booster-after-gps-launch/ |access-date=18 December 2018 |publisher=Spaceflight Now}}{{Cite news |date=23 December 2018 |title=SpaceX Caps Record 2018 With Launch of Air Force GPS Satellite |url=https://www.bloomberg.com/news/articles/2018-12-23/spacex-caps-record-2018-with-launch-of-air-force-gps-satellite |access-date=23 December 2018 |publisher=Bloomberg}} On 22 August 2019, the second GPS III satellite was launched aboard a Delta IV rocket.{{Cite web |date=22 August 2019 |title=The last single-stick Delta rocket launched Thursday, and it put on a show |url=https://arstechnica.com/science/2019/08/the-last-single-stick-delta-rocket-launched-thursday-and-it-put-on-a-show/}}

On 21 September 2016, the U.S. Air Force exercised a US$395 million contract option with Lockheed Martin for the ninth and tenth Block III space vehicles, expected to be available for launch by 2022.

Launch history

8 of 10 GPS Block III satellites have been launched. 7 are currently operational, with 1 undergoing post launch commissioning.

class="wikitable" style="text-align:center"

! Satellite

! SVN

! Launch date (UTC)

! Rocket

! Launch site

! Status

! Ref.

USA-289
GPS III-01
Vespucci

| 74

| 23 December 2018
13:51

| Falcon 9 Block 5

| Cape Canaveral, SLC{{nbhyph}}40

| {{yes|In service}}

|{{Cite news |last=Clark |first=Stephen |date=23 December 2018 |title=SpaceX closes out year with successful GPS satellite launch |url=https://spaceflightnow.com/2018/12/23/spacex-closes-out-year-with-successful-gps-satellite-launch/ |access-date=24 December 2018 |publisher=Spaceflight Now}}{{Cite web |title=NANU 2020-004 |url=https://www.navcen.uscg.gov/?Do=gpsShowNanu&num=2020004 |access-date=13 January 2020}} {{PD-notice}}

USA-293
GPS III-02
Magellan

| 75

| 22 August 2019
13:06

| Delta IV M+ (4,2)

| Cape Canaveral, SLC{{nbhyph}}37B

| {{yes|In service}}

|{{Cite web |title=NANU 2020-015 |url=https://www.navcen.uscg.gov/?Do=gpsShowNanu&num=2020015 |access-date=2 April 2020}} {{PD-notice}}

USA-304
GPS III-03
Matthew Henson

| 76

| 30 June 2020
20:10

| Falcon 9 Block 5

| Cape Canaveral, SLC{{nbhyph}}40

| {{yes|In service}}

|{{Cite web |title=NANU 2020-046 |url=https://navcen.uscg.gov/?Do=gpsShowNanu&num=2020046 |access-date=23 November 2020 |website=USCG Navigation Center}}

USA-309
GPS III-04
Sacagawea

| 77

| 5 November 2020
23:24

| Falcon 9 Block 5

| Cape Canaveral, SLC{{nbhyph}}40

| {{yes|In service}}

|{{Cite web |title=NANU 2020-086 |url=https://navcen.uscg.gov/?Do=gpsShowNanu&num=2020086 |access-date=2 December 2020 |website=USCG Navigation Center}}

USA-319
GPS III-05
Neil Armstrong

| 78

| 17 June 2021
16:09

| Falcon 9 Block 5

| Cape Canaveral, SLC{{nbhyph}}40

| {{yes|In service}}

| {{Cite web |title=NANU 2022-025 |url=https://www.navcen.uscg.gov/?Do=gpsShowNanu&num=2022025 |access-date=25 May 2022 |website=USCG Navigation Center}}

USA-343
GPS III-06
Amelia Earhart

| 79

| 18 January 2023
12:24

| Falcon 9 Block 5

| Cape Canaveral, SLC{{nbhyph}}40

| {{yes|In service}}

|{{Cite web |title=Fifth GPS III Satellite Takes to the Skies |url=https://www.lockheedmartin.com/en-us/news/features/2021/fifth-gps-iii-satellite-launch.html |access-date=16 June 2021 |website=Lockheed Martin |quote=Lockheed Martin’s sixth, seventh and eighth GPS III satellites are already complete, “Available for Launch” and just waiting for launch date arrangements.}}{{Cite web |date=25 October 2022 |title=Sixth GPS III satellite safely arrives in Florida for January launch |url=https://www.ssc.spaceforce.mil/Portals/3/Documents/PRESS%20RELEASES/Sixth%20GPS%20III%20satellite%20safely%20arrives%20in%20Florida%20for%20January%20launch.pdf?ver=FPKavj8FNR3UYsYUEAGyqw%3d%3d |access-date=7 November 2022 |website=Space Systems Command |language=en-US}}{{Cite web |title=NAVSTAR 82 (USA 343) |url=https://www.n2yo.com/satellite/?s=55268 |access-date=21 January 2023 |website=N2YO}}{{Cite web |title=Falcon 9 Block 5 {{!}} GPS III-6 |url=https://nextspaceflight.com/launches/details/102 |access-date=7 November 2022}}

GPS III-07
Sally Ride

| 80

| 17 December 2024

| Falcon 9 Block 5

| Cape Canaveral, SLC{{nbhyph}}40

| {{yes|In service}}

|{{Cite web |date=12 September 2023 |title=GPS Status and Modernization |url=https://www.gps.gov/cgsic/meetings/2023/menschner.pdf |access-date=5 October 2023 |publisher=U.S. Space Force Space Systems Command}}{{Cite web |title=Falcon 9 Block 5 {{!}} GPS III-7 (RRT-1) |url=https://nextspaceflight.com/launches/details/7341 |access-date=17 December 2024 |website=nextspaceflight.com |language=en}}{{Cite press release |date=22 January 2025 |title=GPS III SV-07 Receives Operational Acceptance |url=https://www.spoc.spaceforce.mil/News/Article-Display/Article/4037698/gps-iii-sv-07-receives-operational-acceptance |access-date=7 April 2025 |website=United States Space Force}}

GPS III-08
Katherine Johnson

| 81

| 30 May 2025
17:37

| Falcon 9 Block 5

| Cape Canaveral, SLC{{nbhyph}}40

| {{unofficial|Under commissioning}}

|{{Cite web |date=5 June 2023 |title=GPS MODERNIZATION: Space Force Should Reassess Requirements for Satellites and Handheld Devices |url=https://www.gao.gov/assets/gao-23-106018.pdf |quote=Space Force is projected to launch the 27th M-code capable GPS satellite in February 2025.}}{{Cite news |last=Clark |first=Stephen |date=8 April 2025 |title=A military satellite waiting to launch with ULA will now fly with SpaceX |url=https://arstechnica.com/space/2025/04/a-military-satellite-waiting-to-launch-with-ula-will-now-fly-with-spacex/ |access-date=8 April 2025 |publisher=Ars Technica |language=en}}

GPS III-09
Ellison Onizuka

| 82

| End 2025

| Vulcan Centaur

| Cape Canaveral, SLC{{nbhyph}}41

| {{planned|Available for launch}}

|{{Cite web |date=18 June 2021 |title=SpaceX launches GPS satellite to provide PNT services |url=https://www.gpsworld.com/spacex-launches-gps-satellite-to-provide-pnt-services/ |access-date=22 June 2021 |website=GPS World |language=en}}{{Cite web |date=26 August 2022 |title=GPS III Space Vehicle 09 declared "Available for Launch" |url=https://www.ssc.spaceforce.mil/Portals/3/Documents/PRESS%20RELEASES/GPS%20III%20Space%20Vehicle%2009%20declared%20%E2%80%9CAvailable%20for%20Launch%E2%80%9D.pdf?ver=JI0soAFzUL1p41K7J0P73A%3d%3d |access-date=7 November 2022 |website=Space Systems Command |language=en}}

GPS III-10
Hedy Lamarr

| 83

| 2026

| Vulcan Centaur VC2S

| Cape Canaveral, SLC{{nbhyph}}41

| {{planned|Available for launch}}

|

New navigation signals

{{Main|GPS signals}}

= Civilian L2 (L2C) =

One of the first announcements was the addition of a new civilian-use signal to be transmitted on a frequency other than the L1 frequency used for the existing GPS Coarse Acquisition (C/A) signal. Ultimately, this became known as the L2C signal because it is broadcast on the L2 frequency (1227.6 MHz). It can be transmitted by all block IIR-M and later design satellites. The original plan stated that until the new OCX (Block 1) system is in place, the signal would consist of a default message ("Type 0") that contains no navigational data.{{Cite web |date=23 September 2016 |title=New Civil Signals: Second Civil Signal |url=http://www.gps.gov/systems/gps/modernization/civilsignals/#L2C |access-date=20 April 2017 |publisher=National Coordination Office for Space-Based Positioning, Navigation, and Timing}} {{PD-notice}} OCX Block 1 with the L2C navigation data was scheduled to enter service in February 2016,{{Cite web |date=26 September 2013 |title=Control Segment: Next Generation Operational Control System |url=http://www.gps.gov/systems/gps/control/#OCX |access-date=21 November 2013 |publisher=National Coordination Office for Space-Based Positioning, Navigation, and Timing}} {{PD-notice}}{{Cite web |last=Kolibaba |first=Ray |date=14 November 2012 |title=GPS OCX Program Status |url=https://web.stanford.edu/group/scpnt/pnt/PNT12/2012_presentation_files/15-Kolibaba_presentation.pdf |access-date=2 May 2017 |publisher=Stanford 2012 PNT Challenges and Opportunities Symposium}} but was delayed until 2022 or later.{{Cite web |date=30 November 2016 |title=GAO: New GPS Ground System, Not GPS III Engineering, Primary Cause for Delays |url=http://www.insidegnss.com/node/5252 |url-status=dead |archive-url=https://web.archive.org/web/20161226145413/http://www.insidegnss.com/node/5252 |archive-date=26 December 2016 |access-date=25 December 2016 |publisher=Inside GNSS}}

As a result of OCX delays, the L2C signal was decoupled from the OCX deployment schedule. All satellites capable of transmitting the L2C signal (all GPS satellites launched since 2005) began broadcasting pre-operational civil navigation (CNAV) messages in April 2014, and in December 2014 the U.S. Air Force started transmitting CNAV uploads on a daily basis.{{Cite web |last=Jewell |first=Don |date=12 August 2015 |title=L2C and Next-Generation Smart PNT Receivers |url=http://gpsworld.com/l2c-and-next-generation-smart-pnt-receivers/ |access-date=28 December 2016 |publisher=GPS World}} The L2C signal will be considered fully operational after it is being broadcast by at least 24 space vehicles, projected to happen in 2023. As of October 2017, L2C was being broadcast from 19 satellites; by June 2022 there were 24 satellites broadcasting this signal. The L2C signal is tasked with providing improved accuracy of navigation, providing an easy-to-track signal, and acting as a redundant signal in case of localized interference.

The immediate effect of having two civilian frequencies being transmitted from one satellite is the ability to directly measure, and therefore remove, the ionospheric delay error for that satellite. Without such a measurement, a GPS receiver must use a generic model or receive ionospheric corrections from another source (such as a Satellite Based Augmentation System). Advances in technology for the GPS satellites and the GPS receivers have made ionospheric delay the largest source of error in the C/A signal. A receiver capable of performing this measurement is referred to as a dual frequency receiver. Its technical characteristics are:

  • L2C contains two distinct PRN sequences:
  • CM (for Civilian Moderate length code) is 10,230 bits in length, repeating every 20 milliseconds.
  • CL (for Civilian Long length code) is 767,250 bits, repeating every 1,500 milliseconds (i.e., every 1.5 second).
  • Each signal is transmitted at 511,500 bits per second (bit/s); however, they are multiplexed to form a 1,023,000 bit/s signal.
  • CM is modulated with a 25 bit/s navigation message with forward error correction, whereas CL contains no additional modulated data.
  • The long, non-data CL sequence provides for approximately 24 dB greater correlation protection (~250 times stronger) than L1 C/A.
  • L2C signal characteristics provide 2.7 dB greater data recovery and 0.7 dB greater carrier tracking than L1 C/A.
  • The L2C signals' transmission power is 2.3 dB weaker than the L1 C/A signal.
  • In a single frequency application, L2C has 65% more ionospheric error than L1.

It is defined in IS-GPS-200.{{Cite web |date=8 June 2010 |title=Interface Specification IS-GPS-200, Revision E |url=http://www.gps.gov/technical/icwg/IS-GPS-200E.pdf |publisher=Coast Guard Navigation Center}} {{PD-notice}}

= Military (M-code) =

A major component of the modernization process, a new military signal called M-code was designed to further improve the anti-jamming and secure access of the military GPS signals. The M-code is transmitted in the same L1 and L2 frequencies already in use by the previous military code, the P(Y) code. The new signal is shaped to place most of its energy at the edges (away from the existing P(Y) and C/A carriers). Unlike the P(Y) code, the M-code is designed to be autonomous, meaning that users can calculate their positions using only the M-code signal. P(Y) code receivers must typically first lock onto the C/A code and then transfer to lock onto the P(Y) code.

In a major departure from previous GPS designs, the M-code is intended to be broadcast from a high-gain directional antenna, in addition to a wide angle (full Earth) antenna. The directional antenna's signal, termed a spot beam, is intended to be aimed at a specific region (i.e., several hundred kilometers in diameter) and increase the local signal strength by 20 dB (10× voltage field strength, 100× power). A side effect of having two antennas is that, for receivers inside the spot beam, the GPS satellite will appear as two GPS signals occupying the same position.

While the full-Earth M-code signal is available on the Block IIR-M satellites, the spot beam antennas will not be available until the Block III satellites are deployed. Like the other new GPS signals, M-code is dependent on OCX—specifically Block 2—which was scheduled to enter service in October 2016,{{Cite web |last=Divis |first=Dee Ann |date=January–February 2013 |title=More Than Money Worries: OCX and the New Civil Signals |url=http://www.insidegnss.com/node/3377 |url-status=dead |archive-url=https://web.archive.org/web/20131202224411/http://www.insidegnss.com/node/3377 |archive-date=2 December 2013 |access-date=21 November 2013 |publisher=Inside GNSS}} but which was delayed until 2022, and that initial date did not reflect the two year first satellite launch delays expected by the GAO.{{Cite web |date=14 May 2014 |title=Future GPS: The USA's GPS-III Programs |url=https://www.defenseindustrydaily.com/the-usas-gps-iii-satellites-04900/ |access-date=17 May 2014 |publisher=Defense Industry Daily}}{{Cite web |date=28 March 2013 |title=Defense Acquisitions: Assessments of Selected Weapon Programs |url=http://www.gao.gov/products/GAO-13-294SP |website=Report Number GAO-13-294SP |publisher=U.S. Government Accountability Office}} {{PD-notice}}

Other M-code characteristics are:

  • Satellites will transmit two distinct signals from two antennas: one for whole Earth coverage, one in a spot beam.
  • Binary offset carrier modulation.
  • Occupies 24 MHz of bandwidth.
  • It uses a new MNAV navigational message, which is packetized instead of framed, allowing for flexible data payloads.
  • There are four effective data channels; different data can be sent on each frequency and on each antenna.
  • It can include FEC and error detection.
  • The spot beam is ~20 dB more powerful than the whole Earth coverage beam.
  • M-code signal at Earth's surface: –158 dBW for whole Earth antenna, –138 dBW for spot beam antennas.

= Safety of Life (L5) =

Safety of Life is a civilian-use signal, broadcast on the L5 frequency (1176.45 MHz). In 2009, a WAAS satellite sent the initial L5 signal test transmissions. SVN-62, the first GPS block IIF satellite, continuously broadcast the L5 signal starting on 28 June 2010.

As a result of schedule delays to the GPS III control segment, the L5 signal was decoupled from the OCX deployment schedule. All satellites capable of transmitting the L5 signal (all GPS satellites launched since May 2010){{Cite web |date=23 September 2016 |title=Civil Signals – Third Civil Signal: L5 |url=http://www.gps.gov/systems/gps/modernization/civilsignals/#L5 |access-date=20 April 2017 |publisher=GPS.gov}} {{PD-notice}} began broadcasting pre-operational civil navigation (CNAV) messages in April 2014, and in December 2014 the Air Force started transmitting CNAV uploads on a daily basis.{{Cite web |date=25 April 2014 |title=DOD Announces Start of Civil Navigation Message Broadcasting |url=http://archive.defense.gov/Releases/Release.aspx?ReleaseID=16666 |url-status=dead |archive-url=https://web.archive.org/web/20161229032229/http://archive.defense.gov/Releases/Release.aspx?ReleaseID=16666 |archive-date=29 December 2016 |access-date=28 December 2016 |publisher=U.S. Department of Defense}} {{PD-notice}} The L5 signal will be considered fully operational once at least 24 space vehicles are broadcasting the signal, currently projected to happen in 2027.

As of 10 July 2023, L5 is being broadcast from 17 satellites, after the removal of the block IIF, SVM-63.{{Cite web |author=|date=2023-08-10 |title=CGSIC Bulletin: GPS Constellation Change: SVN-63 |url=https://amerisurv.com/2023/08/10/cgsic-bulletin-gps-constellation-change-svn-63/ |access-date=2024-10-16 |website=The American Surveyor |language=en-US}}

  • Improves signal structure for enhanced performance.
  • Higher transmission power than L1 or L2C signal (~3 dB, or twice as powerful).
  • Wider bandwidth, yielding a 10-times processing gain.
  • Longer spreading codes (10 times longer than used on the C/A code).
  • Located in the Aeronautical Radionavigation Services band, a frequency band that is available worldwide.

WRC-2000 added a space signal component to this aeronautical band so the aviation community can manage interference to L5 more effectively than L2. It is defined in IS-GPS-705.{{Cite web |date=8 June 2010 |title=Interface Specification IS-GPS-705, Revision A |url=http://www.gps.gov/technical/icwg/IS-GPS-705A.pdf |publisher=Coast Guard Navigation Center}} {{PD-notice}}

= New civilian L1 (L1C) =

L1C is a civilian-use signal, to be broadcast on the same L1 frequency (1575.42 MHz) that contains the C/A signal used by all current GPS users.

L1C broadcasting started when GPS III Control Segment (OCX) Block 1 becomes operational, scheduled for 2022. The L1C signal will reach full operational status when being broadcast from at least 24 GPS Block III satellites, projected for the late 2020s.{{Cite web |date=23 September 2016 |title=Civil Signals – Fourth Civil Signal: L1C |url=http://www.gps.gov/systems/gps/modernization/civilsignals/#L1C |access-date=28 December 2016 |publisher=GPS.gov}} {{PD-notice}}

  • Implementation will provide C/A code to ensure backward compatibility.
  • Assured of 1.5 dB increase in minimum C/A code power to mitigate any noise floor increase.
  • Non-data signal component contains a pilot carrier to improve tracking.
  • Enables greater civil interoperability with Galileo L1.

It is defined in IS-GPS-800.{{Cite web |date=24 September 2013 |title=Interface Specification IS-GPS-800, Revision D |url=http://www.gps.gov/technical/icwg/IS-GPS-800D.pdf |publisher=National Coordination Office for Space-Based Positioning, Navigation, and Timing}} {{PD-notice}}

Improvements

Increased signal power at the Earth's surface:

  • M-code: −158 dBW / −138 dBW.
  • L1 and L2: −157 dBW for the C/A code signal and −160 dBW for the P(Y) code signal.
  • L5 will be −154 dBW.

Researchers from The Aerospace Corporation confirmed that the most efficient means to generate the high-power M-code signal would entail a departure from full-Earth coverage, characteristic of all the user downlink signals up until that point. Instead, a high-gain antenna would be used to produce a directional spot beam several hundred kilometers in diameter. Originally, this proposal was considered as a retrofit to the planned Block IIF satellites. Upon closer inspection, program managers realized that the addition of a large deployable antenna, combined with the changes that would be needed in the operational control segment, presented too great a challenge for the then existing system design.{{Cite journal |last=Lazar |first=Steven |date=Summer 2002 |title=Modernization and the Move to GPS III |url=http://aerospace.org/wp-content/uploads/crosslink/CrosslinkV3N2.pdf |url-status=dead |journal=Crosslink |volume=3 |pages=42–46 |archive-url=https://web.archive.org/web/20140404201119/http://www.aerospace.org/wp-content/uploads/crosslink/CrosslinkV3N2.pdf |archive-date=4 April 2014 |access-date=29 June 2012 |number=2}}

  • NASA has requested that Block III satellites carry laser retro-reflectors.{{Cite web |title=ILRS Meeting on Retroreflector Arrays |url=http://ilrs.gsfc.nasa.gov/docs/retromtg_060406.pdf}} {{PD-notice}} This allows tracking the orbits of the satellites independent of the radio signals, which allows satellite clock errors to be disentangled from ephemeris errors. This, a standard feature of GLONASS, will be included in the Galileo positioning system, and was included as an experiment on two older GPS satellites (satellites 35 and 36).{{Cite web |date=April 2006 |title=Slides from ILRS Meeting on Retroreflector Arrays |url=http://ilrs.gsfc.nasa.gov/docs/retromtg_060406_slides.pdf}} {{PD-notice}}
  • The USAF is working with NASA to add a Distress Alerting Satellite System (DASS) payload to the second increment of GPS III satellites as part of the MEOSAR search and rescue system.{{Cite web |title=NASA Search and Rescue Mission Office : Distress Alerting Satellite System (DASS) |url=http://searchandrescue.gsfc.nasa.gov/dass/index.html |url-status=dead |archive-url=https://web.archive.org/web/20160304072004/http://searchandrescue.gsfc.nasa.gov/dass/index.html |archive-date=4 March 2016}} {{PD-notice}}

Control segment

The GPS Operational Control Segment (OCS), consisting of a worldwide network of satellite operations centers, ground antennas and monitoring stations, provides Command and Control (C2) capabilities for GPS Block II satellites.{{Cite web |date=27 November 2012 |title=GPS Operational Control Segment |url=https://www.losangeles.spaceforce.mil/ |access-date=25 December 2016 |publisher=U.S. Air Force}} {{PD-notice}} The latest update to the GPS OCS, Architectural Evolution Plan 7.5, was operationally accepted in 2019.{{Cite web |last=Colonel John Claxton |date=12 December 2019 |title=Directions 2020: Delivering GPS Capabilities |url=https://www.gpsworld.com/directions-2020-delivering-gps-capabilities/ |access-date=21 January 2023 |publisher=GPSWorld.com}}

= Next-Generation operational control segment (OCX) =

{{anchor|OCX}}In 2010, the United States Air Force announced plans to develop a modern control segment, a critical part of the GPS modernization initiative. OCS will continue to serve as the ground control system of record until the new system, Next Generation GPS Operational Control System (OCX), is fully developed and functional.{{Cite web |title=GPS Advanced Control Segment (OCX) |url=https://www.losangeles.spaceforce.mil/?id=18676 |url-status=live |archive-url=https://web.archive.org/web/20120503181621/http://www.losangeles.af.mil/library/factsheets/factsheet.asp?id=18676 |archive-date=3 May 2012}} {{PD-notice}}

OCX features are being delivered to the United States Air Force in three separate phases, known as "blocks".{{Cite web |title=GPS Control Segment |url=http://www.gps.gov/systems/gps/control/ |access-date=25 December 2016 |website=gps.gov}} {{PD-notice}} The OCX blocks are numbered zero through two. With each block delivered, OCX gains additional functionality.

In June 2016, the U.S. Air Force formally notified Congress the OCX program's projected program costs had risen above US$4.25 billion, thus exceeding baseline cost estimates of US$3.4 billion by 25%, also known as a critical Nunn-McCurdy breach. Factors leading to the breach include "inadequate systems engineering at program inception", and "the complexity of cybersecurity requirements on OCX".{{Cite web |date=1 July 2016 |title=Air Force declares Nunn-McCurdy breach on GPS ground system |url=https://spacenews.com/air-force-declares-nunn-mccurdy-breach-on-gps-ground-system/ |publisher=SpaceNews.com}} In October 2016, the Department of Defense formally certified the program, a necessary step to allow development to continue after a critical breach.{{Cite web |last=Insinna |first=Valerie |date=17 October 2016 |title=Raytheon's OCX Offering Survives Nunn-McCurdy Breach |url=http://www.defensenews.com/articles/raytheons-ocx-offering-survives-nunn-mccurdy-breach |access-date=25 December 2016 |publisher=DefenseNews}}

In July 2021, all OCX monitor station installations had been completed. OCX monitoring stations are expected to transition to operations in "early 2023," and the U.S. Space Force hopes to complete operational acceptance for all of OCX in 2027.

== OCX Block 0 (launch and checkout for Block III) ==

OCX Block 0 provides the minimum subset of full OCX capabilities necessary to support launch and early on-orbit spacecraft bus checkout on GPS III space vehicles.

Block 0 completed two cybersecurity testing events in April and May 2018 with no new vulnerabilities found.{{Cite web |date=26 September 2018 |title=GPS Status and Modernization Progress: Service, Satellites, Control Segment, and Military GPS User Equipment |url=https://www.gps.gov/cgsic/meetings/2018/schaub.pdf |access-date=10 November 2018 |publisher=US Air Force Space and Missile Systems Center}} {{PD-notice}}

In June 2018, Block 0 had its third successful integrated launch rehearsal with GPS III.

The U.S. Air Force accepted the delivery of OCX Block 0 in November 2017, and is used it to prepare for the first GPS launch in December 2018.

As of May 2022, OCX Block 0 has successfully supported the launch and checkout of GPS III SV 01–05.{{Cite web |date=2 May 2022 |title=Directions 2022: GPS positioned for the future – GPS World |url=https://www.gpsworld.com/directions-2022-positioned-for-the-future/}}

== OCX Block 1 (civilian GPS III features) ==

OCX Block 1 is an upgrade to OCX Block 0, at which time the OCX system achieves Initial Operating Capability (IOC). Once Block 1 is deployed, OCX will for the first time be able to command and control both Block II and Block III GPS satellites, as well as support the ability to begin broadcasting the civilian L1C signal.

In November 2016, the GAO reported that OCX Block 1 had become the primary cause for delay in activating the GPS III PNT mission.{{Cite web |last=Divis |first=Dee Ann |date=30 November 2016 |title=GAO: New GPS Ground System, Not GPS III Engineering, Primary Cause for Delays |url=http://www.insidegnss.com/node/5252 |url-status=dead |archive-url=https://web.archive.org/web/20171202152918/http://www.insidegnss.com/node/5252 |archive-date=2 December 2017 |access-date=1 December 2017 |website=InsideGNSS |publisher=Gibbons Media & Research LLC}}

Block 1 completed the final iteration of Critical Design Review (CDR) in September 2018. Software development on Block 1 is scheduled to complete in 2019, after which the Block 1 software will undergo 2.5 years of system testing.

== OCX Block 2 (military GPS III features, civilian signal monitoring) ==

OCX Block 2 upgrades OCX with the advanced M-code features for military users and the ability to monitor performance of the civilian signals. In March 2017, the contractor rephased its OCX delivery schedule so that Block 2 will now be delivered to the Air Force concurrently with Block 1.{{Cite web |last=Divis |first=Dee Ann |date=27 April 2017 |title=OCX Passes Deep Dive Review; GAO Says Program Risk Remains High |url=http://insidegnss.com/node/5449 |url-status=dead |archive-url=https://web.archive.org/web/20170428072536/http://insidegnss.com/node/5449 |archive-date=28 April 2017 |access-date=28 April 2017 |publisher=InsideGNSS.com}} In July 2017, an additional nine months delay to the schedule was announced. According to the July 2017 program schedule, OCX will be delivered to the U.S. Air Force in April 2022.{{Cite web |last=Divis |first=Dee Ann |date=31 July 2017 |title=OCX Delayed Again as Development Jumps to $6 Billion |url=http://www.insidegnss.com/node/5573 |url-status=dead |archive-url=https://web.archive.org/web/20170816021607/http://www.insidegnss.com/node/5573 |archive-date=16 August 2017 |access-date=15 August 2017 |publisher=InsideGNSS.com}}

== OCX Block 3F (launch and checkout for Block IIIF) ==

OCX Block 3F upgrades OCX with the ability to perform Launch & Checkout for Block IIIF satellites.{{Cite web |date=6 May 2021 |title=Counting 0, 1, 2, 3F: The Long Hello of GPS OCX |url=https://insidegnss.com/counting-0-1-2-3f-the-long-hello-of-gps-ocx/ |access-date=21 January 2023 |publisher=InsideGNSS.com}}{{Cite web |last=Dunn |first=Michael |date=2 May 2022 |title=Directions 2022: GPS positioned for the future |url=https://www.gpsworld.com/directions-2022-positioned-for-the-future/ |access-date=21 January 2023 |publisher=GPSWorld.com}} Block IIIF satellites are expected to start launching in 2026.

The OCX Block 3F contract, valued at $228 million, was awarded to Raytheon Intelligence and Space on 30 April 2021.{{Cite web |last=U.S. Space Force Space and Missile Systems Center Public Affairs |date=3 May 2021 |title=OCX 3F Contract Awarded to Raytheon Intelligence and Space |url=https://www.losangeles.spaceforce.mil/News/Article-Display/Article/2593172/ocx-3f-contract-awarded-to-raytheon-intelligence-and-space/ |access-date=21 January 2023}}

= Contingency operations =

GPS III Contingency Operations ("COps") is an update to the GPS Operational Control Segment, allowing OCS to provide Block IIF Position, Navigation, and Timing (PNT) features from GPS III satellites. The Contingency Operations effort enables GPS III satellites to participate in the GPS constellation, albeit in a limited fashion, without having to wait until OCX Block 1 becomes operational (scheduled for 2022).

The United States Space Force awarded the US$96 million Contingency Operations contract in February 2016.{{Cite web |last=Seligman |first=Lara |date=3 March 2016 |title=Weapons Tester Warns of Risk to Air Force's GPS Contingency Plan |url=http://www.defensenews.com/story/defense/air-space/2016/03/03/weapons-tester-warns-risk-air-forces-gps-contingency-plan/81260248/ |access-date=25 December 2016 |publisher=Defense News}} Contingency Ops was operationally accepted by in April 2020.

= Deployment schedule =

class="wikitable"
style="background:#FFDEAD;"

! rowspan=3 style="vertical-align: bottom; text-align: left;" | Date

! rowspan=3 style="vertical-align: bottom; text-align: left;" | Deployment

! colspan=3 style="vertical-align: bottom;" | Space Vehicles

! rowspan=3 style="vertical-align: bottom; text-align: left;" | Remarks

colspan=2 style="vertical-align: bottom;" | Command & Control

! rowspan=2 style="vertical-align: bottom;" | Satellites Delivering Navigation Data

OCS

! OCX

style="vertical-align: top;"

| December 2018{{Cite web |last=SMC Public Affairs Office |date=2 November 2017 |title=Air Force accepts delivery of GPS Next Generation Operational Control System |url=https://www.losangeles.spaceforce.mil/ |access-date=3 December 2017 |publisher=U.S. Air Force Space Command, Space and Missile System Center}} {{PD-notice}}

| OCX Block 0

| rowspan="2" style="text-align: center;" | Block II

| rowspan="2" style="text-align: center;" | Block III
(Launch and Checkout only)

| style="text-align: center;" | Block II

| rowspan="2" | OCS and OCX operate in parallel

style="vertical-align: top;"

| April 2020

| Contingency Operations

| rowspan=2 style="text-align: center;" rowspan="3"| Block II
and
Block III

style="vertical-align: top;"

| March 2023{{Cite web |date=8 April 2022 |title=Next Generation Operational Control System (OCX) Selected Acquisition Report |url=https://www.esd.whs.mil/Portals/54/Documents/FOID/Reading%20Room/Selected_Acquisition_Reports/FY_2021_SARS/22-F-0762_OCX_SAR_2021.pdf |access-date=21 January 2023 |publisher=U.S. Department of Defense}}

| OCX Block 1 and OCX Block 2

|

| style="text-align: center;"| Block II & Block III

| OCS no longer used, L1C transmissions begin, full GPS III functionality achieved.

style="vertical-align: top;"

| July 2025

| OCX Block 3F

|

| style="text-align: center;" | Block II & Block III (complete), Block IIIF (Launch and Checkout only)

See also

{{Portal|Spaceflight}}

References

{{Reflist|refs=

{{Cite web |last=Gruss |first=Mike |date=21 September 2016 |title=Lockheed Martin to build two more GPS 3 satellites for U.S. Air Force |url=http://spacenews.com/lockheed-martin-to-build-two-more-gps-3-satellites-for-u-s-air-force/ |access-date=22 September 2016 |publisher=Space News}}

}}