Goldschmidt tolerance factor

{{short description|Factor used to determine the compatibility of an ion with a crystal structure}}

Goldschmidt's tolerance factor (from the German word Toleranzfaktor) is an indicator for the stability and distortion of crystal structures.{{cite book |url=https://books.google.com/books?id=N-rXAAAAMAAJ&q=Handbook+of+magnetism+and+advanced+magnetic+materials |last1=Parkin|first1=((editors-in-chief, Helmut Kronmller, Stuart))|title=Handbook of magnetism and advanced magnetic materials|year=2007|publisher=John Wiley & Sons|location=Hoboken, NJ|isbn=978-0-470-02217-7|author2=Mats Johnsson|edition=[Online-Ausg.]|author3=Peter Lemmens|accessdate=17 May 2012}} It was originally only used to describe the perovskite ABO3 structure, but now tolerance factors are also used for ilmenite.{{cite journal |last1=Liu |first1=XiangChun |author2=Hong, Rongzi; Tian, Changsheng |title=Tolerance factor and the stability discussion of ABO3-type ilmenite |journal=Journal of Materials Science: Materials in Electronics |date=24 April 2008 |volume=20 |issue=4 |pages=323–327 |doi=10.1007/s10854-008-9728-8 |s2cid=96085518 }}

Alternatively the tolerance factor can be used to calculate the compatibility of an ion with a crystal structure.{{cite web |last=Schinzer |first=Carsten |title=Distortion of Perovskites |url=http://www.ccp14.ac.uk/ccp/web-mirrors/pki/uni/pki/members/schinzer/stru_chem/perov/di_gold.html |accessdate=17 May 2012}}

The first description of the tolerance factor for perovskite was made by Victor Moritz Goldschmidt in 1926.{{cite journal|last=Goldschmidt|first=Victor M.|title=Die Gesetze der Krystallochemie|journal=Die Naturwissenschaften|year=1926|volume=14|issue=21|pages=477–485|doi=10.1007/bf01507527|bibcode=1926NW.....14..477G|s2cid=33792511}}

Mathematical expression

The Goldschmidt tolerance factor (t) is a dimensionless number that is calculated from the ratio of the ionic radii:

style=" background: #fdfdfd; border:1px solid #ddd; text-align:center; margin:auto" cellspacing="15"
colspan="3" align="center" | t={r_A+r_O \over \sqrt{2}(r_B+r_O)}
rA is the radius of the A cation.rB is the radius of the B cation.rO is the radius of the anion (usually oxygen).

In an ideal cubic perovskite structure, the lattice parameter (i.e., length) of the unit cell (a) can be calculated using the following equation:

style=" background: #fdfdfd; border:1px solid #ddd; text-align:center; margin:auto" cellspacing="15"
colspan="3" align="center" | a=\sqrt{2}(r_A+r_O)=2(r_B+r_O)
rA is the radius of the A cation.rB is the radius of the B cation.rO is the radius of the anion (usually oxygen).

Perovskite structure

The perovskite structure has the following tolerance factors (t):

class="wikitable"
Goldschmidt tolerance factor (t)StructureExplanationExampleExample lattice
>1Hexagonal or TetragonalA ion too big or B ion too small.

|

| -

0.9-1CubicA and B ions have ideal size.

|

| File:Cubic perovskite structure.png

0.71 - 0.9Orthorhombic/RhombohedralA ions too small to fit into B ion interstices.

|

  • GdFeO3 (Orthorhombic)
  • CaTiO3 (Orthorhombic)

| File:CaTiO3 perovskite structure.png

<0.71Different structuresA ions and B have similar ionic radii.

|

| -

See also

References