Orthorhombic crystal system
{{Short description|Type of three-dimensional crystal structural geometry}}
In crystallography, the orthorhombic crystal system is one of the 7 crystal systems. Orthorhombic lattices result from stretching a cubic lattice along two of its orthogonal pairs by two different factors, resulting in a rectangular prism with a rectangular base (a by b) and height (c), such that a, b, and c are distinct. All three bases intersect at 90° angles, so the three lattice vectors remain mutually orthogonal.
Bravais lattices
{{further|Bravais lattice}}
There are four orthorhombic Bravais lattices: primitive orthorhombic, base-centered orthorhombic, body-centered orthorhombic, and face-centered orthorhombic.
class="wikitable skin-invert-image"
! Bravais lattice ! Primitive ! Base-centered ! Body-centered ! Face-centered |
align=center
| oP | oS | oI | oF |
Unit cell |
---|
For the base-centered orthorhombic lattice, the primitive cell has the shape of a right rhombic prism;See {{harvp|Hahn|2002|p=746}}, row oC, column Primitive, where the cell parameters are given as a1 = a2, α = β = 90° it can be constructed because the two-dimensional centered rectangular base layer can also be described with primitive rhombic axes. Note that the length of the primitive cell below equals of the conventional cell above.
{{multiple image | align = center | direction = horizontal | header = Right rhombic prism primitive cell | image1 = Rhombic prism.svg | width1 = 100 | caption1 = Primitive cell of the base-centered orthorhombic lattice | image2 = Rectangular unit cells centered.svg | width2 = 150 | caption2 = Relationship between base layers of primitive and conventional cells }}
Crystal classes
{{further|Crystallographic point group}}
The orthorhombic crystal system class names, examples, Schönflies notation, Hermann-Mauguin notation, point groups, International Tables for Crystallography space group number,{{cite book |title=International Tables for Crystallography |doi=10.1107/97809553602060000001 |isbn=978-1-4020-4969-9 |editor-first=E. |editor-last=Prince |year=2006 |publisher= International Union of Crystallography|s2cid=146060934 }} orbifold notation, type, and space groups are listed in the table below.
class=wikitable |
rowspan=2 width=50| Space group#Notation
! colspan=5|Point group ! rowspan=2|Type ! rowspan=2|Example ! colspan=4|Space groups |
---|
Name{{cite web |title=The 32 crystal classes |url=https://www.tulane.edu/~sanelson/eens211/32crystalclass.htm |access-date=2018-06-19}}
! Schön. ! Intl ! Orb. ! Cox. ! Primitive ! Base-centered ! Face-centered ! Body-centered |
align=center
! 16–24 | Rhombic disphenoidal | D2 (V) | 222 | 222 | [2,2]+ | Epsomite Boron(gamma form) | align=left| P222, P2221, P21212, P212121 | C2221, C222 | F222 | I222, I212121 |
align=center
! 25–46 | Rhombic pyramidal | C2v | mm2 | *22 | [2] | Polar | align=left| Pmm2, Pmc21, Pcc2, Pma2, Pca21, Pnc2, Pmn21, Pba2, Pna21, Pnn2 | Cmm2, Cmc21, Ccc2 | Fmm2, Fdd2 | Imm2, Iba2, Ima2 |
align=center
! 47–74 | Rhombic dipyramidal | D2h (Vh) | mmm | *222 | [2,2] | Olivine, aragonite, marcasite | align=left| Pmmm, Pnnn, Pccm, Pban, Pmma, Pnna, Pmna, Pcca, Pbam, Pccn, Pbcm, Pnnm, Pmmn, Pbcn, Pbca, Pnma | Cmcm, Cmce, Cmmm, Cccm, Cmme, Ccce | Fmmm, Fddd | Immm, Ibam, Ibca, Imma |
In two dimensions
See also
References
{{reflist}}
Further reading
- {{cite book|last1=Hurlbut|first1=Cornelius S.|last2=Klein|first2=Cornelis|year=1985|title=Manual of Mineralogy|edition=20th|pages=[https://archive.org/details/manualofmineralo00klei/page/69 69–73]|isbn=0-471-80580-7|url-access=registration|url=https://archive.org/details/manualofmineralo00klei/page/69}}
- {{Cite book|editor1-last=Hahn|editor1-first=Theo|title=International Tables for Crystallography, Volume A: Space Group Symmetry|series=International Tables for Crystallography|url=http://it.iucr.org/A/|publisher=Springer-Verlag|location=Berlin, New York|edition=5th|isbn=978-0-7923-6590-7|doi=10.1107/97809553602060000100|year=2002|volume=A}}
{{Crystal systems}}
{{DEFAULTSORT:Orthorhombic Crystal System}}