HEAT repeat

{{Short description|Protein tandem repeat}}

{{Pfam_box

| Symbol = HEAT

| Name = HEAT repeat

| image = Alpha solenoid pp2a 2iae with single repeat center.png

| width =

| caption = An example of an alpha solenoid structure composed of 15 HEAT repeats. The protein phosphatase 2A regulatory subunit is shown with the N-terminus in blue at bottom and the C-terminus in red at top. A single helix-turn-helix motif is shown in the center with the outer helix in pink, the inner helix in green, and the turn in white. From {{PDB|2IAE}}.{{cite journal|last1=Cho|first1=Uhn Soo|last2=Xu|first2=Wenqing|title=Crystal structure of a protein phosphatase 2A heterotrimeric holoenzyme|journal=Nature|date=1 November 2006|volume=445|issue=7123|pages=53–57|doi=10.1038/nature05351|pmid=17086192|s2cid=4408160}}{{cite journal |vauthors=Groves MR, Hanlon N, Turowski P, Hemmings BA, Barford D |title=The structure of the protein phosphatase 2A PR65/A subunit reveals the conformation of its 15 tandemly repeated HEAT motifs |journal=Cell |volume=96 |issue=1 |pages=99–110 |date=January 1999 |pmid=9989501 |doi= 10.1016/S0092-8674(00)80963-0|s2cid=14465060 |doi-access=free }}

| Pfam = PF02985

| InterPro = IPR000357

| SMART=

| PROSITE = PDOC50077

| SCOP = 1b3u

| TCDB =

| OPM family =

| OPM protein =

| PDB = {{PDB2|1b3u}}, {{PDB2|1f59}}, {{PDB2|1gcj}}, {{PDB2|1ibr}}, {{PDB2|1m5n}}, {{PDB2|1o6o}}, {{PDB2|1o6p}}, {{PDB2|1qbk}}, {{PDB2|1qgr}}, {{PDB2|1u6g}}, {{PDB2|1ukl}}, {{PDB2|2bku}}

}}

A HEAT repeat is a protein tandem repeat structural motif composed of two alpha helices linked by a short loop. HEAT repeats can form alpha solenoids, a type of solenoid protein domain found in a number of cytoplasmic proteins. The name "HEAT" is an acronym for four proteins in which this repeat structure is found: Huntingtin, elongation factor 3 (EF3), protein phosphatase 2A (PP2A),{{Cite journal|last1=Kobe|first1=Bostjan|last2=Gleichmann|first2=Thomas|last3=Horne|first3=James|last4=Jennings|first4=Ian G.|last5=Scotney|first5=Pierre D.|last6=Teh|first6=Trazel|date=1999-05-05|title=Turn up the HEAT|url=https://research.monash.edu/en/publications/turn-up-the-heat|journal=Structure|language=English|volume=7|issue=5|pages=R91–R97|doi=10.1016/S0969-2126(99)80060-4|issn=0969-2126|pmid=10378263|doi-access=free}} and the yeast kinase TOR1.{{cite journal |vauthors=Andrade MA, Bork P | title = HEAT repeats in the Huntington's disease protein | journal = Nat. Genet. | volume = 11 | issue = 2 | pages = 115–6 |date=October 1995 | pmid = 7550332 | doi = 10.1038/ng1095-115 | s2cid = 6911746 }} HEAT repeats form extended superhelical structures which are often involved in intracellular transport; they are structurally related to armadillo repeats. The nuclear transport protein importin beta contains 19 HEAT repeats.

Various HEAT repeat proteins and their structures

Representative examples of HEAT repeat proteins include importin β (also known as karyopherin β) family,{{cite journal | author = Malik HS, Eickbush TH, Goldfarb DS | title = Evolutionary specialization of the nuclear targeting apparatus | journal = Proc. Natl. Acad. Sci. USA| volume = 94 | issue = 25 | pages = 13738–13742 | year =1997 | doi = 10.1073/pnas.94.25.13738 | pmid = 9391096| pmc = 28376 | bibcode = 1997PNAS...9413738M | doi-access = free }} regulatory subunits of condensin and cohesin,{{cite journal | author = Neuwald AF, Hirano T | title = HEAT repeats associated with condensins, cohesins, and other complexes involved in chromosome-related functions | journal = Genome Res.| volume = 10 | issue = 10 | pages = 1445–52 | year = 2000 | doi = 10.1101/gr.147400 | pmid = 11042144| pmc = 310966 }} separase,{{cite journal | author= Jäger H, Herzig B, Herzig A, Sticht H, Lehner CF, Heidmann S | title= Structure predictions and interaction studies indicate homology of separase N-terminal regulatory domains and Drosophila THR | journal =Cell Cycle | volume= 3 | issue= 2 | pages =182–188 | year = 2004 | doi= 10.4161/cc.3.2.605 | pmid = 14712087| doi-access= free }} PIKKs (phosphatidylinositol 3-kinase-related protein kinases) such as ATM (Ataxia telangiectasia mutated) and ATR (Ataxia telangiectasia and Rad3 related),{{cite journal | author = Perry J, Kleckner N | title = The ATRs, ATMs, and TORs are giant HEAT repeat proteins | journal = Cell| volume = 112 | issue = 2 | pages = 151–155 | year = 2003 | doi = 10.1016/s0092-8674(03)00033-3 | pmid = 12553904| s2cid = 17261901 | doi-access = free }}{{cite journal | author = Baretić D, Williams RL | title = PIKKs--the solenoid nest where partners and kinases meet | journal = Curr. Opin. Struct. Biol. | volume = 29 | pages = 134–142 | year = 2014 | doi = 10.1016/j.sbi.2014.11.003 | pmid =25460276}} and the microtubule-binding protein XMAP215/Dis1/TOG{{cite journal |last1=Ohkura |first1=Hiroyuki |last2=Garcia |first2=Miguel A. |last3=Toda |first3=Takashi |title=Dis1/TOG universal microtubule adaptors - one MAP for all? |journal=Journal of Cell Science |date=1 November 2001 |volume=114 |issue=21 |pages=3805–3812 |doi=10.1242/jcs.114.21.3805 |pmid=11719547 |url=http://jcs.biologists.org/cgi/pmidlookup?view=long&pmid=11719547 |url-access=subscription }} and CLASP.{{cite journal | author = Al-Bassam J, Kim H, Brouhard G, van Oijen A, Harrison SC, Chang F | title = CLASP promotes microtubule rescue by recruiting tubulin dimers to the microtubule | journal = Dev. Cell| volume = 19 | issue = 2 | pages = 245–258 | year = 2010 | doi = 10.1016/j.devcel.2010.07.016 | pmid =20708587| pmc = 3156696 }} Thus, cellular functions of HEAT repeat proteins are highly variable.

The structure of the following HEAT repeat proteins have been determined so far:

  • Protein modification and degradation
  • A subunit{{cite journal |vauthors=Groves MR, Hanlon N, Turowski P, Hemmings BA, Barford D |title=The structure of the protein phosphatase 2A PR65/A subunit reveals the conformation of its 15 tandemly repeated HEAT motifs |journal=Cell |volume=96 |issue=1 |pages=99–110 |date=January 1999 |pmid=9989501 |doi= 10.1016/S0092-8674(00)80963-0|s2cid=14465060 |doi-access=free }} and holoenzyme{{cite journal | author = Xu Y, Xing Y, Chen Y, Chao Y, Lin Z, Fan E, Yu JW, Strack S, Jeffrey PD, Shi Y | title = Structure of the protein phosphatase 2A holoenzyme | journal = Cell| volume = 127 | issue = 6 | pages = 1239–1251 | year = 2006 | doi = 10.1016/j.cell.2006.11.033 | pmid =17174897| s2cid = 18584536 | doi-access = free }}{{cite journal | author = Cho US, Xu W | title = Crystal structure of a protein phosphatase 2A heterotrimeric holoenzyme | journal = Nature| volume = 445| issue = 7123 | pages = 53–57 | year = 2007 | doi = 10.1038/nature05351 | pmid =17086192 | bibcode = 2007Natur.445...53C | s2cid = 4408160 }} of PP2A
  • SCFubiquitin ligase regulator Cand1{{cite journal | author = Goldenberg SJ, Cascio TC, Shumway SD, Garbutt KC, Liu J, Xiong Y, Zheng N | title = Structure of the Cand1-Cul1-Roc1 complex reveals regulatory mechanisms for the assembly of the multisubunit cullin-dependent ubiquitin ligases | journal = Cell | volume = 119 | issue = 4 | pages = 517–528 | year = 2004 | doi = 10.1016/j.cell.2004.10.019 | pmid =15537541| s2cid = 1606360 | doi-access = free }}
  • Hsm3, a molecular chaperon involved in the assembly of 26Sproteasome{{cite journal | author = Takagi K, Kim S, Yukii H, Ueno M, Morishita R, Endo Y, Kato K, Tanaka K, Saeki Y, Mizushima T | title = Structural basis for specific recognition of Rpt1p, an ATPase subunit of 26 S proteasome, by proteasome-dedicated chaperone Hsm3p | journal = J. Biol. Chem. | volume = 287 | issue = 15 | pages = 12172–12182 | year = 2012 | doi = 10.1074/jbc.M112.345876 | pmid =22334676| pmc = 3320968 | doi-access = free }}
  • Nucleo-cytoplasmic transport
  • Importin β{{cite journal |author=Cingolani G, Petosa C, Weis K, Müller CW |title=Structure of importin-beta bound to the IBB domain of importin-alpha |journal=Nature |volume=399 |issue=6733 |pages=221–229 |year=1999|pmid=10353244 |doi= 10.1038/20367|bibcode=1999Natur.399..221C |s2cid=4425840 }}{{cite journal | author = Chook YM, Blobel G | title = Structure of the nuclear transport complex karyopherin-beta2-Ran x GppNHp | journal = Nature| volume = 399 | issue = 6733 | pages = 230–237 | year = 1999 | doi = 10.1038/20375 | pmid = 10353245| s2cid = 4413233 }}{{cite journal | author = Bayliss R, Littlewood T, Stewart M | title = Structural basis for the interaction between FxFG nucleoporin repeats and importin-beta in nuclear trafficking | journal = Cell| volume = 102 | issue = 1 | pages = 99–108 | year = 2000 | doi = 10.1016/s0092-8674(00)00014-3 | pmid = 10929717| s2cid = 17495979 | doi-access = free }}
  • Exportin Cse1{{cite journal | author = Matsuura Y, Stewart M | title = Structural basis for the assembly of a nuclear export complex | journal = Nature| volume = 432 | issue = 7019 | pages = 872–877 | year = 2004 | doi = 10.1038/nature03144 | pmid = 15602554| bibcode = 2004Natur.432..872M | s2cid = 4406515 }}
  • Transportin 1{{cite journal | author = Imasaki T, Shimizu T, Hashimoto H, Hidaka Y, Kose S, Imamoto N, Yamada M, Sato M | title = Structural basis for substrate recognition and dissociation by human transportin 1| journal = Molecular Cell| volume = 28 | issue = 1 | pages = 57–67 | year = 2007 | doi = 10.1016/j.molcel.2007.08.006| pmid =17936704| doi-access = free }}
  • Nuleoporin Gle1;{{cite journal | author = Montpetit B, Thomsen ND, Helmke KJ, Seeliger MA, Berger JM, Weis K | title = A conserved mechanism of DEAD-box ATPase activation by nucleoporins and InsP6 in mRNA export | journal = Nature | volume = 472 | issue = 7342 | pages = 238–242 | year = 2011 | doi = 10.1038/nature09862 | pmid =21441902| pmc = 3078754 | bibcode = 2011Natur.472..238M }} Nup188;{{cite journal | author = Andersen KR, Onischenko E, Tang JH, Kumar P, Chen JZ, Ulrich A, Liphardt JT, Weis K, Schwartz TU | title = Scaffold nucleoporins Nup188 and Nup192 share structural and functional properties with nuclear transport receptors | journal = eLife | volume = 11 | issue = 2 | pages = e00745 | year = 2013 | doi = 10.7554/eLife.00745 | pmid =23795296| pmc = 3679522 | doi-access = free }} Nup192{{cite journal | author = Stuwe T, Lin DH, Collins LN, Hurt E, Hoelz A| title = Evidence for an evolutionary relationship between the large adaptor nucleoporin Nup192 and karyopherins | journal = Proc. Natl. Acad. Sci. | volume = 111 | issue = 7 | pages = 2530–2535 | year = 2014 | doi = 10.1073/pnas.1311081111 | pmid =24505056| pmc = 3932873 | bibcode = 2014PNAS..111.2530S | doi-access = free }}
  • Transcriptional regulation
  • TFIID subunit TAF6{{cite journal | author = Scheer E, Delbac F, Tora L, Moras D, Romier C| title = TFIID TAF6-TAF9 complex formation involves the HEAT repeat-containing C-terminal domain of TAF6 and is modulated by TAF5 protein | journal = J. Biol. Chem. | volume = 287 | issue = 33 | pages = 27580–27592 | year = 2012 | doi = 10.1074/jbc.M112.379206 | pmid =22696218| pmc = 3431708 | doi-access = free }}
  • TBP regulator Mot1 (Modifier of transcription 1){{cite journal | author = Wollmann P, Cui S, Viswanathan R, Berninghausen O, Wells MN, Moldt M, Witte G, Butryn A, Wendler P, Beckmann R, Auble DT, Hopfner KP | title = Structure and mechanism of the Swi2/Snf2 remodeller Mot1 in complex with its substrate TBP | journal =Nature | volume = 475 | issue = 7356 | pages = 403–407 | year = 2011 | doi = 10.1038/nature10215 | pmid =21734658| pmc = 3276066 }}
  • Transcriptional initiation factor Rrn3{{cite journal | author = Blattner C, Jennebach S, Herzog F, Mayer A, Cheung AC, Witte G, Lorenzen K, Hopfner KP, Heck AJ, Aebersold R, Cramer P | title = Molecular basis of Rrn3-regulated RNA polymerase I initiation and cell growth | journal = Genes Dev. | volume = 25 | issue = 19 | pages = 2093–2105 | year = 2011 | doi = 10.1101/gad.17363311 | pmid =21940764| pmc = 3197207 }}
  • Translational regulation
  • Elongation factor eEF3{{cite journal | author = Andersen CB, Becker T, Blau M, Anand M, Halic M, Balar B, Mielke T, Boesen T, Pedersen JS, Spahn CM, Kinzy TG, Andersen GR, Beckmann R | title = Structure of eEF3 and the mechanism of transfer RNA release from the E-site | journal = Nature | volume =443 | issue = 7112 | pages = 663–668 | year = 2006 | doi = 10.1038/nature05126 | pmid =16929303| bibcode = 2006Natur.443..663A | hdl = 11858/00-001M-0000-0010-8377-7 | s2cid = 14994883 | hdl-access = free }}
  • Initiation factor eIF4G{{cite journal | author = Marcotrigiano J, Lomakin IB, Sonenberg N, Pestova TV, Hellen CU, Burley SK | title = A conserved HEAT domain within eIF4G directs assembly of the translation initiation machinery | journal = Mol. Cell | volume = 7 | issue = 1 | pages = 193–203 | year = 2001 | doi = 10.1016/s1097-2765(01)00167-8 | pmid =11172724| doi-access = free }}
  • Aminoacyl tRNA synthetase transfer protein Cex1p{{cite journal | author = Nozawa K, Ishitani R, Yoshihisa T, Sato M, Arisaka F, Kanamaru S, Dohmae N, Mangroo D, Senger B, Becker HD, Nureki O | title = Crystal structure of Cex1p reveals the mechanism of tRNA trafficking between nucleus and cytoplasm | journal = Nucleic Acids Res. | volume = 41 | issue = 6 | pages = 3901–3914 | year = 2013 | doi = 10.1093/nar/gkt010 | pmid =23396276| pmc = 3616705 }}
  • DNA repair
  • DNA-PK (DNA-dependent protein kinase){{cite journal | author = Sibanda BL, Chirgadze DY, Blundell TL | title = Crystal structure of DNA-PKcs reveals a large open-ring cradle {{sic|comprised |hide=y|of}} HEAT repeats | journal = Nature | volume =463 | issue = 7277 | pages = 118–121 | year = 2010 | doi = 10.1038/nature08648 | pmid =20023628| pmc = 2811870 }}
  • Fanconi anemia responsible protein FANCF (FANCF){{cite journal | author = Kowal P, Gurtan AM, Stuckert P, D'Andrea AD, Ellenberger T | title = Structural determinants of human FANCF protein that function in the assembly of a DNA damage signaling complex | journal = J. Biol. Chem. | volume = 282 | issue = 3 | pages = 2047–2055 | year = 2007 | doi = 10.1074/jbc.M608356200 | pmid =17082180| doi-access = free }}
  • Damaged DNA-binding protein AlkD (Alkylpurin DNA glycosylase){{cite journal | author = Rubinson EH, Gowda AS, Spratt TE, Gold B, Eichman BF | title = An unprecedented nucleic acid capture mechanism for excision of DNA damage | journal = Nature | volume = 468 | issue = 7322 | pages = 406–411 | year = 2010 | doi = 10.1038/nature09428 | pmid =20927102| pmc = 4160814 | bibcode = 2010Natur.468..406R }}
  • PIKKs chaperone Tel2{{cite journal | author = Takai H, Xie Y, de Lange T, Pavletich NP | title = Tel2 structure and function in the Hsp90-dependent maturation of mTOR and ATR complexes | journal = Genes Dev. | volume = 24 | issue = 18 | pages = 2019–2030 | year = 2010 | doi = 10.1101/gad.1956410 | pmid =20801936| pmc = 2939364 }}
  • Chromosomal regulation
  • Cohesin subunit SA2{{cite journal | author =Hara K, Zheng G, Qu Q, Liu H, Ouyang Z, Chen Z, Tomchick DR, Yu H | title = Structure of cohesin subcomplex pinpoints direct shugoshin-Wapl antagonism in centromeric cohesion | journal = Nat. Struct. Mol. Biol.| volume = 21 | issue = 10 | pages = 864–870 | year = 2014| doi = 10.1038/nsmb.2880 | pmid =25173175| pmc = 4190070 }}/Scc3{{cite journal | author =Roig MB, Löwe J, Chan KL, Beckouët F, Metson J, Nasmyth K | title = Structure and function of cohesin's Scc3/SA regulatory subunit. | journal = FEBS Lett | volume = 588 | issue = 20 | pages = 3692–3702 | year = 2014| doi = 10.1016/j.febslet.2014.08.015 | pmid =25171859| pmc = 4175184 }}{{cite journal | author =Li Y, Muir K, Bowler MW, Metz J, Haering CH, Panne D | title = Structural basis for Scc3-dependent cohesin recruitment to chromatin. | journal = eLife | volume = 7 | pages = e38356. doi: 10.7554/eLife.38356 | year = 2018| doi = 10.7554/eLife.38356 | pmid =30109982| pmc = 6120753 | doi-access = free }}
  • Cohesin regulator Wapl{{cite journal | author = Chatterjee A, Zakian S, Hu XW, Singleton MR | title = Structural insights into the regulation of cohesion establishment by Wpl1 | journal = EMBO J. | volume = 32 | issue = 5 | pages = 677–687 | year = 2013 | doi = 10.1038/emboj.2013.16 | pmid =23395900| pmc = 3590988 }}{{cite journal | author = Ouyang Z, Zheng G, Song J, Borek DM, Otwinowski Z, Brautigam CA, Tomchick DR, Rankin S, Yu H | title = Structure of the human cohesin inhibitor Wapl | journal = Proc. Natl. Acad. Sci. USA| volume = 110 | issue = 28 | pages = 11355–11360 | year = 2013 | doi = 10.1073/pnas.1304594110 | pmid =23776203| pmc = 3710786 | bibcode = 2013PNAS..11011355O | doi-access = free }}
  • Cohesin regulator Pds5{{cite journal | author = Muir KW, Kschonsak M, Li Y, Metz J, Haering CH, Panne D. | title = Structure of the Pds5-Scc1 complex and implications for cohesin function | journal = Cell Rep| year = 2016 | volume = 14 | issue = 9 | pages = 2116–2126 | doi = 10.1016/j.celrep.2016.01.078 | pmid =26923589| doi-access = free }}{{cite journal | author = Lee BG, Roig MB, Jansma M, Petela N, Metson J, Nasmyth K, Löwe J | title = Crystal structure of the cohesin gatekeeper Pds5 and in complex with kleisin Scc1 | journal = Cell Rep| year = 2016 | volume = 14 | issue = 9 | pages = 2108–2115 | doi = 10.1016/j.celrep.2016.02.020 | pmid =26923598| pmc = 4793087 }}{{cite journal | author = Ouyang Z, Zheng G, Tomchick DR, Luo X, Yu H. | title = Structural basis and IP6 requirement for Pds5-dependent cohesin dynamics | journal = Mol Cell| volume = 62 | issue = 2 | pages = 248–259 | year = 2016 | doi = 10.1016/j.molcel.2016.02.033 | pmid =26971492| pmc = 5560056 }}
  • Cohesin loading factor Scc2{{cite journal | author = Kikuchi S, Borek DM, Otwinowski Z, Tomchick DR, Yu H | title = Crystal structure of the cohesin loader Scc2 and insight into cohesinopathy| journal = Proc Natl Acad Sci USA| volume = 113 | issue = 44 | pages = 12444–12449 | year = 2016 | doi = 10.1073/pnas.1611333113| pmid =27791135| pmc = 5098657| bibcode = 2016PNAS..11312444K| doi-access = free}}{{cite journal | author = Chao WC, Murayama Y, Muñoz S, Jones AW, Wade BO, Purkiss AG, Hu XW, Borg A, Snijders AP, Uhlmann F, Singleton MR | title = Structure of the cohesin loader Scc2| journal = Nat Commun| volume = 8 | pages = 13952 | year = 2017 | doi = 10.1038/ncomms13952| pmid =28059076| pmc = 5227109| bibcode = 2017NatCo...813952C}}
  • Cohesin protease Separase{{cite journal | author = Bachmann G, Richards MW, Winter A, Beuron F, Morris E, Bayliss R| title =A closed conformation of the Caenorhabditis elegans separase-securin complex | journal = Open Biol | volume = 6 | issue = 4 | pages = 160032. doi: 10.1098/rsob.160032 | year = 2016 | doi =10.1098/rsob.160032 | pmid =27249343| pmc =4852461 }}{{cite journal | author = Luo S, Tong L | title = Molecular mechanism for the regulation of yeast separase by securin | journal = Nature | volume = 542 | issue = 7640 | pages = 255–259 | year = 2017 | doi = 10.1038/nature21061 | pmid =28146474| pmc = 5302053 | bibcode = 2017Natur.542..255L }}{{cite journal | author = Boland A, Martin TG, Zhang Z, Yang J, Bai XC, Chang L, Scheres SH, Barford D | title =Cryo-EM structure of a metazoan separase-securin complex at near-atomic resolution | journal = Nat Struct Mol Biol | volume = 24 | issue = 4 | pages = 414–418 | year = 2017 | doi =10.1038/nsmb.3386 | pmid =28263324| pmc =5385133 }}
  • Condensin subunit CAP-G/ycg1{{cite journal | author = Kschonsak M, Merkel F, Bisht S, Metz J, Rybin V, Hassler M, Haering CH| title =Structural basis for a safety-belt mechanism that anchors condensin to chromosomes | journal = Cell | volume = 171 | issue = 3 | pages = 588–600.e24 | year = 2017 | doi =10.1016/j.cell.2017.09.008 | pmid =28988770| pmc =5651216 }}{{cite journal |last1=Hara |first1=Kodai |last2=Kinoshita |first2=Kazuhisa |last3=Migita |first3=Tomoko |last4=Murakami |first4=Kei |last5=Shimizu |first5=Kenichiro |last6=Takeuchi |first6=Kozo |last7=Hirano |first7=Tatsuya |last8=Hashimoto |first8=Hiroshi |title=Structural basis of HEAT -kleisin interactions in the human condensin I subcomplex |journal=EMBO Reports |date=12 March 2019 |volume=20 |issue=5 |doi=10.15252/embr.201847183 |pmid=30858338 |pmc=6501013 }}
  • Condensin subunit CAP-D2/ycs4{{cite journal | author = Hassler M, Shaltiel IA, Kschonsak M, Simon B, Merkel F, Thärichen L, Bailey HJ, Macošek J, Bravo S, Metz J, Hennig J, Haering CH| title =Structural basis of an asymmetric condensin ATPase cycle | journal = Mol Cell | volume = 74 | issue = 6 | pages = 1175–1188.e24 | year = 2019 | doi =10.1016/j.molcel.2019.03.037 | pmid =31226277| pmc =6591010 }}
  • Cytoskeletal regulation
  • Microtubule-binding protein TOG{{cite journal | author = Al-Bassam J, Larsen NA, Hyman AA, Harrison SC | title = Crystal structure of a TOG domain: conserved features of XMAP215/Dis1-family TOG domains and implications for tubulin binding. | journal = Structure| volume = 15 | issue = 3 | pages = 355–362 | year = 2007 | doi = 10.1016/j.str.2007.01.012 | pmid = 17355870| doi-access = free }}{{cite journal | author = Slep KC, Vale RD. | title = Structural basis of microtubule plus end tracking by XMAP215, CLIP-170, and EB1 | journal = Molecular Cell| volume = 27 | issue = 6 | pages = 976–991 | year = 2007 | doi = 10.1016/j.molcel.2007.07.023 | pmid = 17889670| pmc = 2052927 }}/Stu2{{cite journal | author = Ayaz P, Ye X, Huddleston P, Brautigam CA, Rice LM. | title = A TOG:αβ-tubulin complex structure reveals conformation-based mechanisms for a microtubule polymerase. | journal = Science | volume = 337 | issue = 6096 | pages = 857–60 | year = 2012 | doi = 10.1126/science.1221698 | pmid = 22904013| pmc = 3734851 | bibcode = 2012Sci...337..857A }}
  • Cell proliferation regulation
  • TOR (target of rapamycin){{cite journal | author = Aylett CH, Sauer E, Imseng S, Boehringer D, Hall MN, Ban N, Maier T | title = Architecture of human mTOR complex 1 | journal = Science | volume = 351 | issue = 6268 | pages = 48–52 | year = 2016 | doi = 10.1126/science.aaa3870 | pmid = 26678875| bibcode = 2016Sci...351...48A | s2cid = 32663149 }}
  • Others
  • API5 (Apoptosis inhibitor 5){{cite journal | author = Han BG, Kim KH, Lee SJ, Jeong KC, Cho JW, Noh KH, Kim TW, Kim SJ, Yoon HJ, Suh SW, Lee S, Lee BI | title = Helical repeat structure of apoptosis inhibitor 5 reveals protein-protein interaction modules | journal = J. Biol. Chem. | volume = 287 | issue = 14 | pages = 10727–10737 | year = 2012 | doi = 10.1074/jbc.M111.317594 | pmid =22334682| pmc = 3322819 | doi-access = free }}
  • V-type ATPase H subunit{{cite journal | author = Sagermann M, Stevens TH, Matthews BW | title = Crystal structure of the regulatory subunit H of the V-type ATPase of Saccharomyces cerevisiae | journal = Proc. Natl. Acad. Sci. USA | volume = 98 | issue = 13 | pages = 7134–7139 | year = 2001 | doi = 10.1073/pnas.131192798 | pmid =11416198| pmc = 34635 | bibcode = 2001PNAS...98.7134S | doi-access = free }}

References

{{Reflist}}