Hexic 7-cubes#Hexipenticantic 7-cube

class=wikitable align=right width=600
align=center valign=top

|120px
7-demicube
{{CDD|nodes_10ru|split2|node|3|node|3|node|3|node|3|node}}
{{CDD|node_h|4|node|3|node|3|node|3|node|3|node|3|node}}

|120px
Hexic 7-cube
{{CDD|nodes_10ru|split2|node|3|node|3|node|3|node|3|node_1}}
{{CDD|node_h|4|node|3|node|3|node|3|node|3|node|3|node_1}}

|120px
Hexicantic 7-cube
{{CDD|nodes_10ru|split2|node_1|3|node|3|node|3|node|3|node_1}}
{{CDD|node_h|4|node|3|node_1|3|node|3|node|3|node|3|node_1}}

|120px
Hexiruncic 7-cube
{{CDD|nodes_10ru|split2|node|3|node_1|3|node|3|node|3|node_1}}
{{CDD|node_h|4|node|3|node|3|node_1|3|node|3|node|3|node_1}}

|120px
Hexiruncicantic 7-cube
{{CDD|nodes_10ru|split2|node_1|3|node_1|3|node|3|node|3|node_1}}
{{CDD|node_h|4|node|3|node_1|3|node_1|3|node|3|node|3|node_1}}

align=center valign=top

|120px
Hexisteric 7-cube
{{CDD|nodes_10ru|split2|node|3|node|3|node_1|3|node|3|node_1}}
{{CDD|node_h|4|node|3|node|3|node|3|node_1|3|node|3|node_1}}

|120px
Hexistericantic 7-cube
{{CDD|nodes_10ru|split2|node_1|3|node|3|node_1|3|node|3|node_1}}
{{CDD|node_h|4|node|3|node_1|3|node|3|node_1|3|node|3|node_1}}

|120px
Hexisteriruncic 7-cube
{{CDD|nodes_10ru|split2|node|3|node_1|3|node_1|3|node|3|node_1}}
{{CDD|node_h|4|node|3|node|3|node_1|3|node_1|3|node|3|node_1}}

|120px
Hexisteriruncicantic 7-cube
{{CDD|nodes_10ru|split2|node_1|3|node_1|3|node_1|3|node|3|node_1}}
{{CDD|node_h|4|node|3|node_1|3|node_1|3|node_1|3|node|3|node_1}}

|120px
Hexipentic 7-cube
{{CDD|nodes_10ru|split2|node|3|node|3|node|3|node_1|3|node_1}}
{{CDD|node_h|4|node|3|node|3|node|3|node|3|node_1|3|node_1}}

align=center valign=top

|120px
Hexipenticantic 7-cube
{{CDD|nodes_10ru|split2|node_1|3|node|3|node|3|node_1|3|node_1}}
{{CDD|node_h|4|node|3|node_1|3|node|3|node|3|node_1|3|node_1}}

|120px
Hexipentiruncic 7-cube
{{CDD|nodes_10ru|split2|node|3|node_1|3|node|3|node_1|3|node_1}}
{{CDD|node_h|4|node|3|node|3|node_1|3|node|3|node_1|3|node_1}}

|120px
Hexipentiruncicantic 7-cube
{{CDD|nodes_10ru|split2|node_1|3|node_1|3|node|3|node_1|3|node_1}}
{{CDD|node_h|4|node|3|node_1|3|node_1|3|node|3|node_1|3|node_1}}

|120px
Hexipentisteric 7-cube
{{CDD|nodes_10ru|split2|node|3|node|3|node_1|3|node_1|3|node_1}}
{{CDD|node_h|4|node|3|node|3|node|3|node_1|3|node_1|3|node_1}}

|120px
Hexipentistericantic 7-cube
{{CDD|nodes_10ru|split2|node_1|3|node|3|node_1|3|node_1|3|node_1}}
{{CDD|node_h|4|node|3|node_1|3|node|3|node_1|3|node_1|3|node_1}}

align=center valign=top

|120px
Hexipentisteriruncic 7-cube
{{CDD|nodes_10ru|split2|node|3|node_1|3|node_1|3|node_1|3|node_1}}
{{CDD|node_h|4|node|3|node|3|node_1|3|node_1|3|node_1|3|node_1}}

|120px
Hexipentisteriruncicantic 7-cube
{{CDD|nodes_10ru|split2|node_1|3|node_1|3|node_1|3|node_1|3|node_1}}
{{CDD|node_h|4|node|3|node_1|3|node_1|3|node_1|3|node_1|3|node_1}}

|

|

|

colspan=5|Orthogonal projections in D7 Coxeter plane

In seven-dimensional geometry, a hexic 7-cube is a convex uniform 7-polytope, constructed from the uniform 7-demicube. There are 16 unique forms.

{{TOC left}}

{{-}}

Hexic 7-cube

class="wikitable" align="right" style="margin-left:10px" width="250"

!bgcolor=#e7dcc3 colspan=2|Hexic 7-cube

bgcolor=#e7dcc3|Typeuniform 7-polytope
bgcolor=#e7dcc3|Schläfli symbolt0,5{3,34,1}
h6{4,35}
bgcolor=#e7dcc3|Coxeter-Dynkin diagram{{CDD|nodes_10ru|split2|node|3|node|3|node|3|node|3|node_1}}
{{CDD|node_h|4|node|3|node|3|node|3|node|3|node|3|node_1}}
bgcolor=#e7dcc3|5-faces
bgcolor=#e7dcc3|4-faces
bgcolor=#e7dcc3|Cells
bgcolor=#e7dcc3|Faces
bgcolor=#e7dcc3|Edges4704
bgcolor=#e7dcc3|Vertices448
bgcolor=#e7dcc3|Vertex figure
bgcolor=#e7dcc3|Coxeter groupsD7, [34,1,1]
bgcolor=#e7dcc3|Propertiesconvex

= Cartesian coordinates =

The Cartesian coordinates for the vertices of a hexic 7-cube centered at the origin are coordinate permutations:

: (±1,±1,±1,±1,±1,±1,±3)

with an odd number of plus signs.

=Images=

{{7-demicube Coxeter plane graphs|t05|150}}

Hexicantic 7-cube

=Images=

{{7-demicube Coxeter plane graphs|t015|150}}

Hexiruncic 7-cube

=Images=

{{7-demicube Coxeter plane graphs|t025|150}}

Hexisteric 7-cube

=Images=

{{7-demicube Coxeter plane graphs|t035|150}}

Hexipentic 7-cube

=Images=

{{7-demicube Coxeter plane graphs|t045|150}}

Hexiruncicantic 7-cube

=Images=

{{7-demicube Coxeter plane graphs|t0125|150}}

Hexistericantic 7-cube

=Images=

{{7-demicube Coxeter plane graphs|t0135|150}}

Hexipenticantic 7-cube

=Images=

{{7-demicube Coxeter plane graphs|t0145|150}}

Hexisteriruncic 7-cube

=Images=

{{7-demicube Coxeter plane graphs|t0235|150}}

Hexipentiruncic 7-cube

=Images=

{{7-demicube Coxeter plane graphs|t0245|150}}

Hexipentisteric 7-cube

=Images=

{{7-demicube Coxeter plane graphs|t0345|150}}

Hexisteriruncicantic 7-cube

=Images=

{{7-demicube Coxeter plane graphs|t01235|150}}

Hexipentiruncicantic 7-cube

=Images=

{{7-demicube Coxeter plane graphs|t01245|150}}

Hexipentisteriruncic 7-cube

=Images=

{{7-demicube Coxeter plane graphs|t02345|150}}

Hexipentistericantic 7-cube

=Images=

{{7-demicube Coxeter plane graphs|t01345|150}}

Hexipentisteriruncicantic 7-cube

=Images=

{{7-demicube Coxeter plane graphs|t012345|150}}

Related polytopes

This polytope is based on the 7-demicube, a part of a dimensional family of uniform polytopes called demihypercubes for being alternation of the hypercube family.

There are 95 uniform polytopes with D7 symmetry, 63 are shared by the BC7 symmetry, and 32 are unique:

{{Demihepteract_family}}

Notes

{{reflist}}

References

  • H.S.M. Coxeter:
  • H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
  • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, {{ISBN|978-0-471-01003-6}} [http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471010030.html]
  • (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
  • (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
  • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
  • Norman Johnson Uniform Polytopes, Manuscript (1991)
  • N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D.
  • {{KlitzingPolytopes|polyexa.htm|7D|uniform polytopes (polyexa)}}