Hexicated 7-simplexes
{{Short description|Type of 7-polytope}}
In seven-dimensional geometry, a hexicated 7-simplex is a convex uniform 7-polytope, including 6th-order truncations (hexication) from the regular 7-simplex.
There are 20 unique hexications for the 7-simplex, including all permutations of truncations, cantellations, runcinations, sterications, and pentellations.
The simple hexicated 7-simplex is also called an expanded 7-simplex, with only the first and last nodes ringed, is constructed by an expansion operation applied to the regular 7-simplex. The highest form, the hexipentisteriruncicantitruncated 7-simplex is more simply called an omnitruncated 7-simplex with all of the nodes ringed.
class=wikitable style="margin:1em auto; width:480px" |
align=center valign=top
|120px |120px |120px |120px |
align=center valign=top
|120px |120px |120px |120px |
align=center valign=top
|120px |120px |120px |120px |
align=center valign=top
|120px |120px |120px |120px |
align=center valign=top
|120px |120px |120px |120px |
align=center valign=top
|colspan=4|480px |
align=center valign=top
!colspan=4|Orthogonal projections in A7 Coxeter plane |
Hexicated 7-simplex
class="wikitable" style="float:right; margin-left:8px; width:320px"
!bgcolor=#e7dcc3 colspan=2|Hexicated 7-simplex | |
bgcolor=#e7dcc3|Type | uniform 7-polytope |
bgcolor=#e7dcc3|Schläfli symbol | t0,6{36} |
bgcolor=#e7dcc3|Coxeter-Dynkin diagrams | {{CDD|node_1|3|node|3|node|3|node|3|node|3|node|3|node_1}} |
bgcolor=#e7dcc3|6-faces | 254: 8+8 {35} 40px 28+28 {}x{34} 56+56 {3}x{3,3,3} 70 {3,3}x{3,3} |
bgcolor=#e7dcc3|5-faces | |
bgcolor=#e7dcc3|4-faces | |
bgcolor=#e7dcc3|Cells | |
bgcolor=#e7dcc3|Faces | |
bgcolor=#e7dcc3|Edges | 336 |
bgcolor=#e7dcc3|Vertices | 56 |
bgcolor=#e7dcc3|Vertex figure | 5-simplex antiprism |
bgcolor=#e7dcc3|Coxeter group | A7×2, 36, order 80640 |
bgcolor=#e7dcc3|Properties | convex |
In seven-dimensional geometry, a hexicated 7-simplex is a convex uniform 7-polytope, a hexication (6th order truncation) of the regular 7-simplex, or alternately can be seen as an expansion operation.
= Root vectors =
Its 56 vertices represent the root vectors of the simple Lie group A7.
= Alternate names =
- Expanded 7-simplex
- Small petated hexadecaexon (Acronym: suph) (Jonathan Bowers){{sfn|Klitzing|at=[https://bendwavy.org/klitzing/incmats/suph.htm (x3o3o3o3o3o3x - suph)]}}
= Coordinates =
The vertices of the hexicated 7-simplex can be most simply positioned in 8-space as permutations of (0,1,1,1,1,1,1,2). This construction is based on facets of the hexicated 8-orthoplex, {{CDD|node|4|node_1|3|node|3|node|3|node|3|node|3|node|3|node_1}}.
A second construction in 8-space, from the center of a rectified 8-orthoplex is given by coordinate permutations of:
: (1,-1,0,0,0,0,0,0)
= Images =
{{7-simplex2 Coxeter plane graphs|t06|150}}
Hexitruncated 7-simplex
class="wikitable" style="float:right; margin-left:8px; width:250px"
! style="background:#e7dcc3;" colspan="2"|hexitruncated 7-simplex | |
style="background:#e7dcc3;"|Type | uniform 7-polytope |
style="background:#e7dcc3;"|Schläfli symbol | t0,1,6{36} |
style="background:#e7dcc3;"|Coxeter-Dynkin diagrams | {{CDD|node_1|3|node_1|3|node|3|node|3|node|3|node|3|node_1}} |
style="background:#e7dcc3;"|6-faces | |
style="background:#e7dcc3;"|5-faces | |
style="background:#e7dcc3;"|4-faces | |
style="background:#e7dcc3;"|Cells | |
style="background:#e7dcc3;"|Faces | |
style="background:#e7dcc3;"|Edges | 1848 |
style="background:#e7dcc3;"|Vertices | 336 |
style="background:#e7dcc3;"|Vertex figure | |
style="background:#e7dcc3;"|Coxeter group | A7, [36], order 40320 |
style="background:#e7dcc3;"|Properties | convex |
= Alternate names =
- Petitruncated octaexon (Acronym: puto) (Jonathan Bowers)Klitzing, (x3x3o3o3o3o3x- puto)
= Coordinates =
The vertices of the hexitruncated 7-simplex can be most simply positioned in 8-space as permutations of (0,1,1,1,1,1,2,3). This construction is based on facets of the hexitruncated 8-orthoplex, {{CDD|node|4|node_1|3|node_1|3|node|3|node|3|node|3|node|3|node_1}}.
= Images =
{{7-simplex Coxeter plane graphs|t016|150}}
Hexicantellated 7-simplex
class="wikitable" style="float:right; margin-left:8px; width:250px"
! style="background:#e7dcc3;" colspan="2"|Hexicantellated 7-simplex | |
style="background:#e7dcc3;"|Type | uniform 7-polytope |
style="background:#e7dcc3;"|Schläfli symbol | t0,2,6{36} |
style="background:#e7dcc3;"|Coxeter-Dynkin diagrams | {{CDD|node_1|3|node|3|node_1|3|node|3|node|3|node|3|node_1}} |
style="background:#e7dcc3;"|6-faces | |
style="background:#e7dcc3;"|5-faces | |
style="background:#e7dcc3;"|4-faces | |
style="background:#e7dcc3;"|Cells | |
style="background:#e7dcc3;"|Faces | |
style="background:#e7dcc3;"|Edges | 5880 |
style="background:#e7dcc3;"|Vertices | 840 |
style="background:#e7dcc3;"|Vertex figure | |
style="background:#e7dcc3;"|Coxeter group | A7, [36], order 40320 |
style="background:#e7dcc3;"|Properties | convex |
= Alternate names =
- Petirhombated octaexon (Acronym: puro) (Jonathan Bowers)Klitzing, (x3o3x3o3o3o3x - puro)
= Coordinates =
The vertices of the hexicantellated 7-simplex can be most simply positioned in 8-space as permutations of (0,1,1,1,1,2,2,3). This construction is based on facets of the hexicantellated 8-orthoplex, {{CDD|node|4|node_1|3|node|3|node_1|3|node|3|node|3|node|3|node_1}}.
= Images =
{{7-simplex Coxeter plane graphs|t026|150}}
Hexiruncinated 7-simplex
class="wikitable" style="float:right; margin-left:8px; width:250px"
! style="background:#e7dcc3;" colspan="2"|Hexiruncinated 7-simplex | |
style="background:#e7dcc3;"|Type | uniform 7-polytope |
style="background:#e7dcc3;"|Schläfli symbol | t0,3,6{36} |
style="background:#e7dcc3;"|Coxeter-Dynkin diagrams | {{CDD|node_1|3|node|3|node|3|node_1|3|node|3|node|3|node_1}} |
style="background:#e7dcc3;"|6-faces | |
style="background:#e7dcc3;"|5-faces | |
style="background:#e7dcc3;"|4-faces | |
style="background:#e7dcc3;"|Cells | |
style="background:#e7dcc3;"|Faces | |
style="background:#e7dcc3;"|Edges | 8400 |
style="background:#e7dcc3;"|Vertices | 1120 |
style="background:#e7dcc3;"|Vertex figure | |
style="background:#e7dcc3;"|Coxeter group | A7×2, 36, order 80640 |
style="background:#e7dcc3;"|Properties | convex |
= Alternate names =
- Petaprismated hexadecaexon (Acronym: puph) (Jonathan Bowers){{sfn|Klitzing|at=[https://bendwavy.org/klitzing/incmats/puph.htm (x3o3o3x3o3o3x - puph)]}}
= Coordinates =
The vertices of the hexiruncinated 7-simplex can be most simply positioned in 8-space as permutations of (0,1,1,1,2,2,2,3). This construction is based on facets of the hexiruncinated 8-orthoplex, {{CDD|node|4|node_1|3|node|3|node|3|node_1|3|node|3|node|3|node_1}}.
= Images =
{{7-simplex2 Coxeter plane graphs|t036|150}}
Hexicantitruncated 7-simplex
class="wikitable" style="float:right; margin-left:8px; width:250px"
! style="background:#e7dcc3;" colspan="2"|Hexicantitruncated 7-simplex | |
style="background:#e7dcc3;"|Type | uniform 7-polytope |
style="background:#e7dcc3;"|Schläfli symbol | t0,1,2,6{36} |
style="background:#e7dcc3;"|Coxeter-Dynkin diagrams | {{CDD|node_1|3|node_1|3|node_1|3|node|3|node|3|node|3|node_1}} |
style="background:#e7dcc3;"|6-faces | |
style="background:#e7dcc3;"|5-faces | |
style="background:#e7dcc3;"|4-faces | |
style="background:#e7dcc3;"|Cells | |
style="background:#e7dcc3;"|Faces | |
style="background:#e7dcc3;"|Edges | 8400 |
style="background:#e7dcc3;"|Vertices | 1680 |
style="background:#e7dcc3;"|Vertex figure | |
style="background:#e7dcc3;"|Coxeter group | A7, [36], order 40320 |
style="background:#e7dcc3;"|Properties | convex |
= Alternate names =
- Petigreatorhombated octaexon (Acronym: pugro) (Jonathan Bowers)Klitzing, (x3o3o3o3x3o3x - pugro)
= Coordinates =
The vertices of the hexicantitruncated 7-simplex can be most simply positioned in 8-space as permutations of (0,1,1,1,1,2,3,4). This construction is based on facets of the hexicantitruncated 8-orthoplex, {{CDD|node|4|node_1|3|node_1|3|node_1|3|node|3|node|3|node|3|node_1}}.
= Images =
{{7-simplex Coxeter plane graphs|t0126|150}}
Hexiruncitruncated 7-simplex
class="wikitable" style="float:right; margin-left:8px; width:250px"
! style="background:#e7dcc3;" colspan="2"|Hexiruncitruncated 7-simplex | |
style="background:#e7dcc3;"|Type | uniform 7-polytope |
style="background:#e7dcc3;"|Schläfli symbol | t0,1,3,6{36} |
style="background:#e7dcc3;"|Coxeter-Dynkin diagrams | {{CDD|node_1|3|node_1|3|node|3|node_1|3|node|3|node|3|node_1}} |
style="background:#e7dcc3;"|6-faces | |
style="background:#e7dcc3;"|5-faces | |
style="background:#e7dcc3;"|4-faces | |
style="background:#e7dcc3;"|Cells | |
style="background:#e7dcc3;"|Faces | |
style="background:#e7dcc3;"|Edges | 20160 |
style="background:#e7dcc3;"|Vertices | 3360 |
style="background:#e7dcc3;"|Vertex figure | |
style="background:#e7dcc3;"|Coxeter group | A7, [36], order 40320 |
style="background:#e7dcc3;"|Properties | convex |
= Alternate names =
- Petiprismatotruncated octaexon (Acronym: pupato) (Jonathan Bowers)Klitzing, (x3x3x3o3o3o3x - pupato)
= Coordinates =
The vertices of the hexiruncitruncated 7-simplex can be most simply positioned in 8-space as permutations of (0,1,1,1,2,2,3,4). This construction is based on facets of the hexiruncitruncated 8-orthoplex, {{CDD|node|4|node_1|3|node_1|3|node|3|node_1|3|node|3|node|3|node_1}}.
= Images =
{{7-simplex Coxeter plane graphs|t0136|150}}
Hexiruncicantellated 7-simplex
class="wikitable" style="float:right; margin-left:8px; width:250px"
! style="background:#e7dcc3;" colspan="2"|Hexiruncicantellated 7-simplex | |
style="background:#e7dcc3;"|Type | uniform 7-polytope |
style="background:#e7dcc3;"|Schläfli symbol | t0,2,3,6{36} |
style="background:#e7dcc3;"|Coxeter-Dynkin diagrams | {{CDD|node_1|3|node|3|node_1|3|node_1|3|node|3|node|3|node_1}} |
style="background:#e7dcc3;"|6-faces | |
style="background:#e7dcc3;"|5-faces | |
style="background:#e7dcc3;"|4-faces | |
style="background:#e7dcc3;"|Cells | |
style="background:#e7dcc3;"|Faces | |
style="background:#e7dcc3;"|Edges | 16800 |
style="background:#e7dcc3;"|Vertices | 3360 |
style="background:#e7dcc3;"|Vertex figure | |
style="background:#e7dcc3;"|Coxeter group | A7, [36], order 40320 |
style="background:#e7dcc3;"|Properties | convex |
In seven-dimensional geometry, a hexiruncicantellated 7-simplex is a uniform 7-polytope.
= Alternate names =
- Petiprismatorhombated octaexon (Acronym: pupro) (Jonathan Bowers)Klitzing, (x3o3x3x3o3o3x - pupro)
= Coordinates =
The vertices of the hexiruncicantellated 7-simplex can be most simply positioned in 8-space as permutations of (0,1,1,1,2,3,3,4). This construction is based on facets of the hexiruncicantellated 8-orthoplex, {{CDD|node|4|node_1|3|node|3|node_1|3|node_1|3|node|3|node|3|node_1}}.
= Images =
{{7-simplex Coxeter plane graphs|t0236|150}}
Hexisteritruncated 7-simplex
class="wikitable" style="float:right; margin-left:8px; width:250px"
! style="background:#e7dcc3;" colspan="2"|hexisteritruncated 7-simplex | |
style="background:#e7dcc3;"|Type | uniform 7-polytope |
style="background:#e7dcc3;"|Schläfli symbol | t0,1,4,6{36} |
style="background:#e7dcc3;"|Coxeter-Dynkin diagrams | {{CDD|node_1|3|node_1|3|node|3|node|3|node_1|3|node|3|node_1}} |
style="background:#e7dcc3;"|6-faces | |
style="background:#e7dcc3;"|5-faces | |
style="background:#e7dcc3;"|4-faces | |
style="background:#e7dcc3;"|Cells | |
style="background:#e7dcc3;"|Faces | |
style="background:#e7dcc3;"|Edges | 20160 |
style="background:#e7dcc3;"|Vertices | 3360 |
style="background:#e7dcc3;"|Vertex figure | |
style="background:#e7dcc3;"|Coxeter group | A7, [36], order 40320 |
style="background:#e7dcc3;"|Properties | convex |
= Alternate names =
- Peticellitruncated octaexon (Acronym: pucto) (Jonathan Bowers)Klitzing, (x3x3o3o3x3o3x - pucto)
= Coordinates =
The vertices of the hexisteritruncated 7-simplex can be most simply positioned in 8-space as permutations of (0,1,1,2,2,2,3,4). This construction is based on facets of the hexisteritruncated 8-orthoplex, {{CDD|node|4|node_1|3|node_1|3|node|3|node|3|node_1|3|node|3|node_1}}.
= Images =
{{7-simplex Coxeter plane graphs|t0146|150}}
Hexistericantellated 7-simplex
class="wikitable" style="float:right; margin-left:8px; width:250px"
! style="background:#e7dcc3;" colspan="2"|hexistericantellated 7-simplex | |
style="background:#e7dcc3;"|Type | uniform 7-polytope |
style="background:#e7dcc3;"|Schläfli symbol | t0,2,4,6{36} |
style="background:#e7dcc3;"|Coxeter-Dynkin diagrams | {{CDD|node_1|3|node|3|node_1|3|node|3|node_1|3|node|3|node_1}} |
style="background:#e7dcc3;"|6-faces | t0,2,4{3,3,3,3,3} {}xt0,2,4{3,3,3,3} {3}xt0,2{3,3,3} t0,2{3,3}xt0,2{3,3} |
style="background:#e7dcc3;"|5-faces | |
style="background:#e7dcc3;"|4-faces | |
style="background:#e7dcc3;"|Cells | |
style="background:#e7dcc3;"|Faces | |
style="background:#e7dcc3;"|Edges | 30240 |
style="background:#e7dcc3;"|Vertices | 5040 |
style="background:#e7dcc3;"|Vertex figure | |
style="background:#e7dcc3;"|Coxeter group | A7×2, 36, order 80640 |
style="background:#e7dcc3;"|Properties | convex |
= Alternate names =
- Peticellirhombihexadecaexon (Acronym: pucroh) (Jonathan Bowers)Klitzing, (x3o3x3o3x3o3x - pucroh)
= Coordinates =
The vertices of the hexistericantellated 7-simplex can be most simply positioned in 8-space as permutations of (0,1,1,2,2,3,3,4). This construction is based on facets of the hexistericantellated 8-orthoplex, {{CDD|node|4|node_1|3|node|3|node_1|3|node|3|node_1|3|node|3|node_1}}.
= Images =
{{7-simplex2 Coxeter plane graphs|t0246|150}}
Hexipentitruncated 7-simplex
class="wikitable" style="float:right; margin-left:8px; width:250px"
! style="background:#e7dcc3;" colspan="2"|Hexipentitruncated 7-simplex | |
style="background:#e7dcc3;"|Type | uniform 7-polytope |
style="background:#e7dcc3;"|Schläfli symbol | t0,1,5,6{36} |
style="background:#e7dcc3;"|Coxeter-Dynkin diagrams | {{CDD|node_1|3|node_1|3|node|3|node|3|node|3|node_1|3|node_1}} |
style="background:#e7dcc3;"|6-faces | |
style="background:#e7dcc3;"|5-faces | |
style="background:#e7dcc3;"|4-faces | |
style="background:#e7dcc3;"|Cells | |
style="background:#e7dcc3;"|Faces | |
style="background:#e7dcc3;"|Edges | 8400 |
style="background:#e7dcc3;"|Vertices | 1680 |
style="background:#e7dcc3;"|Vertex figure | |
style="background:#e7dcc3;"|Coxeter group | A7×2, 36, order 80640 |
style="background:#e7dcc3;"|Properties | convex |
= Alternate names =
- Petiteritruncated hexadecaexon (Acronym: putath) (Jonathan Bowers)Klitzing, (x3x3o3o3o3x3x - putath)
= Coordinates =
The vertices of the hexipentitruncated 7-simplex can be most simply positioned in 8-space as permutations of (0,1,2,2,2,2,3,4). This construction is based on facets of the hexipentitruncated 8-orthoplex, {{CDD|node|4|node_1|3|node_1|3|node|3|node|3|node|3|node_1|3|node_1}}.
= Images =
{{7-simplex2 Coxeter plane graphs|t0156|150}}
Hexiruncicantitruncated 7-simplex
class="wikitable" style="float:right; margin-left:8px; width:250px"
! style="background:#e7dcc3;" colspan="2"|Hexiruncicantitruncated 7-simplex | |
style="background:#e7dcc3;"|Type | uniform 7-polytope |
style="background:#e7dcc3;"|Schläfli symbol | t0,1,2,3,6{36} |
style="background:#e7dcc3;"|Coxeter-Dynkin diagrams | {{CDD|node_1|3|node_1|3|node_1|3|node_1|3|node|3|node|3|node_1}} |
style="background:#e7dcc3;"|6-faces | |
style="background:#e7dcc3;"|5-faces | |
style="background:#e7dcc3;"|4-faces | |
style="background:#e7dcc3;"|Cells | |
style="background:#e7dcc3;"|Faces | |
style="background:#e7dcc3;"|Edges | 30240 |
style="background:#e7dcc3;"|Vertices | 6720 |
style="background:#e7dcc3;"|Vertex figure | |
style="background:#e7dcc3;"|Coxeter group | A7, [36], order 40320 |
style="background:#e7dcc3;"|Properties | convex |
= Alternate names =
- Petigreatoprismated octaexon (Acronym: pugopo) (Jonathan Bowers)Klitzing, (x3x3x3x3o3o3x - pugopo)
= Coordinates =
The vertices of the hexiruncicantitruncated 7-simplex can be most simply positioned in 8-space as permutations of (0,1,1,2,2,3,4,5). This construction is based on facets of the hexiruncicantitruncated 8-orthoplex, {{CDD|node|4|node_1|3|node_1|3|node_1|3|node_1|3|node|3|node|3|node_1}}.
= Images =
{{7-simplex2 Coxeter plane graphs|t01236|150}}
Hexistericantitruncated 7-simplex
class="wikitable" style="float:right; margin-left:8px; width:250px"
! style="background:#e7dcc3;" colspan="2"|Hexistericantitruncated 7-simplex | |
style="background:#e7dcc3;"|Type | uniform 7-polytope |
style="background:#e7dcc3;"|Schläfli symbol | t0,1,2,4,6{36} |
style="background:#e7dcc3;"|Coxeter-Dynkin diagrams | {{CDD|node_1|3|node_1|3|node_1|3|node|3|node_1|3|node|3|node_1}} |
style="background:#e7dcc3;"|6-faces | |
style="background:#e7dcc3;"|5-faces | |
style="background:#e7dcc3;"|4-faces | |
style="background:#e7dcc3;"|Cells | |
style="background:#e7dcc3;"|Faces | |
style="background:#e7dcc3;"|Edges | 50400 |
style="background:#e7dcc3;"|Vertices | 10080 |
style="background:#e7dcc3;"|Vertex figure | |
style="background:#e7dcc3;"|Coxeter group | A7, [36], order 40320 |
style="background:#e7dcc3;"|Properties | convex |
= Alternate names =
- Peticelligreatorhombated octaexon (Acronym: pucagro) (Jonathan Bowers)Klitzing, (x3x3x3o3x3o3x - pucagro)
= Coordinates =
The vertices of the hexistericantitruncated 7-simplex can be most simply positioned in 8-space as permutations of (0,1,1,2,2,3,4,5). This construction is based on facets of the hexistericantitruncated 8-orthoplex, {{CDD|node|4|node_1|3|node_1|3|node_1|3|node|3|node_1|3|node|3|node_1}}.
= Images =
{{7-simplex2 Coxeter plane graphs|t01246|150}}
Hexisteriruncitruncated 7-simplex
class="wikitable" style="float:right; margin-left:8px; width:250px"
! style="background:#e7dcc3;" colspan="2"|Hexisteriruncitruncated 7-simplex | |
style="background:#e7dcc3;"|Type | uniform 7-polytope |
style="background:#e7dcc3;"|Schläfli symbol | t0,1,3,4,6{36} |
style="background:#e7dcc3;"|Coxeter-Dynkin diagrams | {{CDD|node_1|3|node_1|3|node|3|node_1|3|node_1|3|node|3|node_1}} |
style="background:#e7dcc3;"|6-faces | |
style="background:#e7dcc3;"|5-faces | |
style="background:#e7dcc3;"|4-faces | |
style="background:#e7dcc3;"|Cells | |
style="background:#e7dcc3;"|Faces | |
style="background:#e7dcc3;"|Edges | 45360 |
style="background:#e7dcc3;"|Vertices | 10080 |
style="background:#e7dcc3;"|Vertex figure | |
style="background:#e7dcc3;"|Coxeter group | A7, [36], order 40320 |
style="background:#e7dcc3;"|Properties | convex |
= Alternate names =
- Peticelliprismatotruncated octaexon (Acronym: pucpato) (Jonathan Bowers)Klitzing, (x3x3o3x3x3o3x - pucpato)
= Coordinates =
The vertices of the hexisteriruncitruncated 7-simplex can be most simply positioned in 8-space as permutations of (0,1,1,2,3,3,4,5). This construction is based on facets of the hexisteriruncitruncated 8-orthoplex, {{CDD|node|4|node_1|3|node_1|3|node|3|node_1|3|node_1|3|node|3|node_1}}.
= Images =
{{7-simplex Coxeter plane graphs|t01346|150}}
Hexisteriruncicantellated 7-simplex
class="wikitable" style="float:right; margin-left:8px; width:250px"
! style="background:#e7dcc3;" colspan="2"|Hexisteriruncicantellated 7-simplex | |
style="background:#e7dcc3;"|Type | uniform 7-polytope |
style="background:#e7dcc3;"|Schläfli symbol | t0,2,3,4,6{36} |
style="background:#e7dcc3;"|Coxeter-Dynkin diagrams | {{CDD|node_1|3|node|3|node_1|3|node_1|3|node_1|3|node|3|node_1}} |
style="background:#e7dcc3;"|6-faces | |
style="background:#e7dcc3;"|5-faces | |
style="background:#e7dcc3;"|4-faces | |
style="background:#e7dcc3;"|Cells | |
style="background:#e7dcc3;"|Faces | |
style="background:#e7dcc3;"|Edges | 45360 |
style="background:#e7dcc3;"|Vertices | 10080 |
style="background:#e7dcc3;"|Vertex figure | |
style="background:#e7dcc3;"|Coxeter group | A7×2, 36, order 80640 |
style="background:#e7dcc3;"|Properties | convex |
= Alternate names =
- Peticelliprismatorhombihexadecaexon (Acronym: pucproh) (Jonathan Bowers)Klitzing, (x3o3x3x3x3o3x - pucproh)
= Coordinates =
The vertices of the hexisteriruncitruncated 7-simplex can be most simply positioned in 8-space as permutations of (0,1,1,2,3,4,4,5). This construction is based on facets of the hexisteriruncitruncated 8-orthoplex, {{CDD|node|4|node_1|3|node|3|node_1|3|node_1|3|node_1|3|node|3|node_1}}.
= Images =
{{7-simplex2 Coxeter plane graphs|t02346|150}}
Hexipenticantitruncated 7-simplex
class="wikitable" style="float:right; margin-left:8px; width:250px"
! style="background:#e7dcc3;" colspan="2"|hexipenticantitruncated 7-simplex | |
style="background:#e7dcc3;"|Type | uniform 7-polytope |
style="background:#e7dcc3;"|Schläfli symbol | t0,1,2,5,6{36} |
style="background:#e7dcc3;"|Coxeter-Dynkin diagrams | {{CDD|node_1|3|node_1|3|node_1|3|node|3|node|3|node_1|3|node_1}} |
style="background:#e7dcc3;"|6-faces | |
style="background:#e7dcc3;"|5-faces | |
style="background:#e7dcc3;"|4-faces | |
style="background:#e7dcc3;"|Cells | |
style="background:#e7dcc3;"|Faces | |
style="background:#e7dcc3;"|Edges | 30240 |
style="background:#e7dcc3;"|Vertices | 6720 |
style="background:#e7dcc3;"|Vertex figure | |
style="background:#e7dcc3;"|Coxeter group | A7, [36], order 40320 |
style="background:#e7dcc3;"|Properties | convex |
= Alternate names =
- Petiterigreatorhombated octaexon (Acronym: putagro) (Jonathan Bowers)Klitzing, (x3x3x3o3o3x3x - putagro)
= Coordinates =
The vertices of the hexipenticantitruncated 7-simplex can be most simply positioned in 8-space as permutations of (0,1,2,2,2,3,4,5). This construction is based on facets of the hexipenticantitruncated 8-orthoplex, {{CDD|node|4|node_1|3|node_1|3|node_1|3|node|3|node|3|node_1|3|node_1}}.
= Images =
{{7-simplex Coxeter plane graphs|t01256|150}}
Hexipentiruncitruncated 7-simplex
class="wikitable" style="float:right; margin-left:8px; width:250px"
! style="background:#e7dcc3;" colspan="2"|Hexipentiruncitruncated 7-simplex | |
style="background:#e7dcc3;"|Type | uniform 7-polytope |
style="background:#e7dcc3;"|Schläfli symbol | t0,1,3,5,6{36} |
style="background:#e7dcc3;"|Coxeter-Dynkin diagrams | {{CDD|node_1|3|node_1|3|node|3|node_1|3|node|3|node_1|3|node_1}} |
style="background:#e7dcc3;"|6-faces | |
style="background:#e7dcc3;"|5-faces | |
style="background:#e7dcc3;"|4-faces | |
style="background:#e7dcc3;"|Cells | |
style="background:#e7dcc3;"|Faces | |
style="background:#e7dcc3;"|Edges | |
style="background:#e7dcc3;"|Vertices | 10080 |
style="background:#e7dcc3;"|Vertex figure | |
style="background:#e7dcc3;"|Coxeter group | A7×2, 36, order 80640 |
style="background:#e7dcc3;"|Properties | convex |
= Alternate names =
- Petiteriprismatotruncated hexadecaexon (Acronym: putpath) (Jonathan Bowers)Klitzing, (x3x3o3x3o3x3x - putpath)
= Coordinates =
The vertices of the hexipentiruncitruncated 7-simplex can be most simply positioned in 8-space as permutations of (0,1,2,2,3,4,4,5). This construction is based on facets of the hexipentiruncitruncated 8-orthoplex, {{CDD|node|4|node_1|3|node_1|3|node|3|node_1|3|node|3|node_1|3|node_1}}.
= Images =
{{7-simplex2 Coxeter plane graphs|t01356|150}}
Hexisteriruncicantitruncated 7-simplex
class="wikitable" style="float:right; margin-left:8px; width:250px"
! style="background:#e7dcc3;" colspan="2"|Hexisteriruncicantitruncated 7-simplex | |
style="background:#e7dcc3;"|Type | uniform 7-polytope |
style="background:#e7dcc3;"|Schläfli symbol | t0,1,2,3,4,6{36} |
style="background:#e7dcc3;"|Coxeter-Dynkin diagrams | {{CDD|node_1|3|node_1|3|node_1|3|node_1|3|node_1|3|node|3|node_1}} |
style="background:#e7dcc3;"|6-faces | |
style="background:#e7dcc3;"|5-faces | |
style="background:#e7dcc3;"|4-faces | |
style="background:#e7dcc3;"|Cells | |
style="background:#e7dcc3;"|Faces | |
style="background:#e7dcc3;"|Edges | 80640 |
style="background:#e7dcc3;"|Vertices | 20160 |
style="background:#e7dcc3;"|Vertex figure | |
style="background:#e7dcc3;"|Coxeter group | A7, [36], order 40320 |
style="background:#e7dcc3;"|Properties | convex |
= Alternate names =
- Petigreatocellated octaexon (Acronym: pugaco) (Jonathan Bowers)Klitzing, (x3x3x3x3x3o3x - pugaco)
= Coordinates =
The vertices of the hexisteriruncicantitruncated 7-simplex can be most simply positioned in 8-space as permutations of (0,1,1,2,3,4,5,6). This construction is based on facets of the hexisteriruncicantitruncated 8-orthoplex, {{CDD|node|4|node_1|3|node_1|3|node_1|3|node_1|3|node_1|3|node|3|node_1}}.
= Images =
{{7-simplex2 Coxeter plane graphs|t012346|150}}
Hexipentiruncicantitruncated 7-simplex
class="wikitable" style="float:right; margin-left:8px; width:250px"
! style="background:#e7dcc3;" colspan="2"|Hexipentiruncicantitruncated 7-simplex | |
style="background:#e7dcc3;"|Type | uniform 7-polytope |
style="background:#e7dcc3;"|Schläfli symbol | t0,1,2,3,5,6{36} |
style="background:#e7dcc3;"|Coxeter-Dynkin diagrams | {{CDD|node_1|3|node_1|3|node_1|3|node_1|3|node|3|node_1|3|node_1}} |
style="background:#e7dcc3;"|6-faces | |
style="background:#e7dcc3;"|5-faces | |
style="background:#e7dcc3;"|4-faces | |
style="background:#e7dcc3;"|Cells | |
style="background:#e7dcc3;"|Faces | |
style="background:#e7dcc3;"|Edges | 80640 |
style="background:#e7dcc3;"|Vertices | 20160 |
style="background:#e7dcc3;"|Vertex figure | |
style="background:#e7dcc3;"|Coxeter group | A7, [36], order 40320 |
style="background:#e7dcc3;"|Properties | convex |
= Alternate names =
- Petiterigreatoprismated octaexon (Acronym: putgapo) (Jonathan Bowers)Klitzing, (x3x3x3x3o3x3x - putgapo)
= Coordinates =
The vertices of the hexipentiruncicantitruncated 7-simplex can be most simply positioned in 8-space as permutations of (0,1,2,2,3,4,5,6). This construction is based on facets of the hexipentiruncicantitruncated 8-orthoplex, {{CDD|node|4|node_1|3|node_1|3|node_1|3|node_1|3|node|3|node_1|3|node_1}}.
= Images =
{{7-simplex2 Coxeter plane graphs|t012356|150}}
Hexipentistericantitruncated 7-simplex
class="wikitable" style="float:right; margin-left:8px; width:250px"
! style="background:#e7dcc3;" colspan="2"|Hexipentistericantitruncated 7-simplex | |
style="background:#e7dcc3;"|Type | uniform 7-polytope |
style="background:#e7dcc3;"|Schläfli symbol | t0,1,2,4,5,6{36} |
style="background:#e7dcc3;"|Coxeter-Dynkin diagrams | {{CDD|node_1|3|node_1|3|node_1|3|node|3|node_1|3|node_1|3|node_1}} |
style="background:#e7dcc3;"|6-faces | |
style="background:#e7dcc3;"|5-faces | |
style="background:#e7dcc3;"|4-faces | |
style="background:#e7dcc3;"|Cells | |
style="background:#e7dcc3;"|Faces | |
style="background:#e7dcc3;"|Edges | 80640 |
style="background:#e7dcc3;"|Vertices | 20160 |
style="background:#e7dcc3;"|Vertex figure | |
style="background:#e7dcc3;"|Coxeter group | A7×2, 36, order 80640 |
style="background:#e7dcc3;"|Properties | convex |
= Alternate names =
- Petitericelligreatorhombihexadecaexon (Acronym: putcagroh) (Jonathan Bowers)Klitzing, (x3x3x3o3x3x3x - putcagroh)
= Coordinates =
The vertices of the hexipentistericantitruncated 7-simplex can be most simply positioned in 8-space as permutations of (0,1,2,3,3,4,5,6). This construction is based on facets of the hexipentistericantitruncated 8-orthoplex, {{CDD|node|4|node_1|3|node_1|3|node_1|3|node|3|node_1|3|node_1|3|node_1}}.
= Images =
{{7-simplex2 Coxeter plane graphs|t012456|150}}
Omnitruncated 7-simplex
class="wikitable" style="float:right; margin-left:8px; width:280px"
! style="background:#e7dcc3;" colspan="2"|Omnitruncated 7-simplex | |
style="background:#e7dcc3;"|Type | uniform 7-polytope |
style="background:#e7dcc3;"|Schläfli symbol | t0,1,2,3,4,5,6{36} |
style="background:#e7dcc3;"|Coxeter-Dynkin diagrams | {{CDD|node_1|3|node_1|3|node_1|3|node_1|3|node_1|3|node_1|3|node_1}} |
style="background:#e7dcc3;"|6-faces | 254 |
style="background:#e7dcc3;"|5-faces | 5796 |
style="background:#e7dcc3;"|4-faces | 40824 |
style="background:#e7dcc3;"|Cells | 126000 |
style="background:#e7dcc3;"|Faces | 191520 |
style="background:#e7dcc3;"|Edges | 141120 |
style="background:#e7dcc3;"|Vertices | 40320 |
style="background:#e7dcc3;"|Vertex figure | Irr. 6-simplex |
style="background:#e7dcc3;"|Coxeter group | A7×2, 36, order 80640 |
style="background:#e7dcc3;"|Properties | convex |
The omnitruncated 7-simplex is composed of 40320 (8 factorial) vertices and is the largest uniform 7-polytope in the A7 symmetry of the regular 7-simplex. It can also be called the hexipentisteriruncicantitruncated 7-simplex which is the long name for the omnitruncation for 7 dimensions, with all reflective mirrors active.
= Alternate names =
- Great petated hexadecaexon (Acronym: guph) (Jonathan Bowers){{sfn|Klitzing|at=[https://bendwavy.org/klitzing/incmats/guph.htm (x3x3x3x3x3x3x - guph)]}}
= Coordinates =
The vertices of the omnitruncated 7-simplex can be most simply positioned in 8-space as permutations of (0,1,2,3,4,5,6,7). This construction is based on facets of the hexipentisteriruncicantitruncated 8-orthoplex, t0,1,2,3,4,5,6{36,4}, {{CDD|node|4|node_1|3|node_1|3|node_1|3|node_1|3|node_1|3|node_1|3|node_1}}.
= Images =
{{7-simplex2 Coxeter plane graphs|t0123456|150}}
Related polytopes
The 20 polytopes presented in this article are a part of 71 uniform 7-polytopes with A7 symmetry shown in the table below.
{{Octaexon family}}
Notes
{{reflist}}
References
- H.S.M. Coxeter:
- H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
- Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, [http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471010030.html wiley.com], {{ISBN|978-0-471-01003-6}}
- (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
- (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
- (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
- Norman Johnson Uniform Polytopes, Manuscript (1991)
- N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, PhD (1966)
- {{KlitzingPolytopes|polyexa.htm|7D uniform polytopes (polyexa) with acronyms}} x3o3o3o3o3o3x - suph, x3x3o3o3o3o3x - puto, x3o3x3o3o3o3x - puro, x3o3o3x3o3o3x - puph, x3o3o3o3x3o3x - pugro, x3x3x3o3o3o3x - pupato, x3o3x3x3o3o3x - pupro, x3x3o3o3x3o3x - pucto, x3o3x3o3x3o3x - pucroh, x3x3o3o3o3x3x - putath, x3x3x3x3o3o3x - pugopo, x3x3x3o3x3o3x - pucagro, x3x3o3x3x3o3x - pucpato, x3o3x3x3x3o3x - pucproh, x3x3x3o3o3x3x - putagro, x3x3x3x3o3x3x - putpath, x3x3x3x3x3o3x - pugaco, x3x3x3x3o3x3x - putgapo, x3x3x3o3x3x3x - putcagroh, x3x3x3x3x3x3x - guph
{{sfn whitelist|CITEREFKlitzing}}
External links
- [https://web.archive.org/web/20070310205351/http://members.cox.net/hedrondude/topes.htm Polytopes of Various Dimensions]
- [http://tetraspace.alkaline.org/glossary.htm Multi-dimensional Glossary]
{{Polytopes}}