Hofstadter points

{{short description|Triangle center}}

In plane geometry, a Hofstadter point is a special point associated with every plane triangle. In fact there are several Hofstadter points associated with a triangle. All of them are triangle centers. Two of them, the Hofstadter zero-point and Hofstadter one-point, are particularly interesting.{{cite web|last=Kimberling|first=Clark|title=Hofstadter points|url=http://faculty.evansville.edu/ck6/tcenters/recent/hofstad.html|accessdate=11 May 2012}} They are two transcendental triangle centers. Hofstadter zero-point is the center designated as X(360) and the Hofstafter one-point is the center denoted as X(359) in Clark Kimberling's Encyclopedia of Triangle Centers. The Hofstadter zero-point was discovered by Douglas Hofstadter in 1992.

Hofstadter triangles

File:HofstadterPoint.svg

Let {{math|△ABC}} be a given triangle. Let {{mvar|r}} be a positive real constant.

Rotate the line segment {{mvar|{{overline|BC}}}} about {{mvar|B}} through an angle {{mvar|rB}} towards {{mvar|A}} and let {{mvar|LBC}} be the line containing this line segment. Next rotate the line segment {{mvar|{{overline|BC}}}} about {{mvar|C}} through an angle {{mvar|rC}} towards {{mvar|A}}. Let {{mvar|L'BC}} be the line containing this line segment. Let the lines {{mvar|LBC}} and {{mvar|L'BC}} intersect at {{math|A(r)}}. In a similar way the points {{math|B(r)}} and {{math|C(r)}} are constructed. The triangle whose vertices are {{math|A(r), B(r), C(r)}} is the Hofstadter {{mvar|r}}-triangle (or, the {{mvar|r}}-Hofstadter triangle) of {{math|△ABC}}.{{cite web|last=Weisstein|first=Eric W.|title=Hofstadter Triangle|url=http://mathworld.wolfram.com/HofstadterTriangle.html|publisher=MathWorld--A Wolfram Web Resource|accessdate=11 May 2012}}

=Special case=

=Trilinear coordinates of the vertices of Hofstadter triangles=

The trilinear coordinates of the vertices of the Hofstadter {{mvar|r}}-triangle are given below:

\begin{array}{ccccccc}

A(r) &=& 1 &:& \frac{\sin rB}{\sin (1-r)B} &:& \frac{\sin rC}{\sin(1-r)C} \\[2pt]

B(r) &=& \frac{\sin rA}{\sin(1-r)A} &:& 1 &:& \frac{\sin rC}{\sin(1-r)C} \\[2pt]

C(r) &=& \frac{\sin rA}{\sin(1-r)A} &:& \frac{\sin(1-r)B}{\sin rB} &:& 1

\end{array}

Hofstadter points

File:HofstadterPointAnimation.gif {{mvar|I}} of the triangle.]]

For a positive real constant {{math|r > 0}}, let {{math|A(r), B(r), C(r)}} be the Hofstadter {{mvar|r}}-triangle of triangle {{math|△ABC}}. Then the lines {{math|AA(r), BB(r), CC(r)}} are concurrent.{{cite journal|last=C. Kimberling|title=Hofstadter points|journal=Nieuw Archief voor Wiskunde|year=1994|volume=12|pages=109–114}} The point of concurrence is the Hofstdter {{mvar|r}}-point of {{math|△ABC}}.

=Trilinear coordinates of Hofstadter {{mvar|r}}-point=

The trilinear coordinates of the Hofstadter {{mvar|r}}-point are given below.

\frac{\sin rA}{\sin(A-rA)} \ :\ \frac{\sin rB}{\sin(B-rB)} \ :\ \frac{\sin rC}{\sin(C-rC)}

Hofstadter zero- and one-points

The trilinear coordinates of these points cannot be obtained by plugging in the values 0 and 1 for {{mvar|r}} in the expressions for the trilinear coordinates for the Hofstadter {{mvar|r}}-point.

The Hofstadter zero-point is the limit of the Hofstadter {{mvar|r}}-point as {{mvar|r}} approaches zero; thus, the trilinear coordinates of Hofstadter zero-point are derived as follows:

\begin{array}{rccccc}

\displaystyle \lim_{r \to 0} & \frac{\sin rA}{\sin(A-rA)} &:& \frac{\sin rB}{\sin(B-rB)} &:& \frac{\sin rC}{\sin(C-rC)} \\[4pt]

\implies \displaystyle \lim_{r \to 0} & \frac{\sin rA}{r\sin(A-rA)} &:& \frac{\sin rB}{r\sin(B-rB)} &:& \frac{\sin rC}{r\sin(C-rC)} \\[4pt]

\implies \displaystyle \lim_{r \to 0} & \frac{A\sin rA}{rA\sin(A-rA)} &:& \frac{B\sin rB}{rB\sin(B-rB)} &:& \frac{C\sin rC}{rC\sin(C-rC)}

\end{array}

Since \lim_{r \to 0} \tfrac{\sin rA}{rA} = \lim_{r \to 0} \tfrac{\sin rB}{rB} = \lim_{r \to 0} \tfrac{\sin rC}{rC} = 1,

\implies \frac{A}{\sin A}\ :\ \frac{B}{\sin B}\ :\ \frac{C}{\sin C} \quad = \quad \frac{A}{a}\ :\ \frac{B}{b}\ :\ \frac{C}{c}

The Hofstadter one-point is the limit of the Hofstadter {{mvar|r}}-point as {{mvar|r}} approaches one; thus, the trilinear coordinates of the Hofstadter one-point are derived as follows:

\begin{array}{rccccc}

\displaystyle \lim_{r \to 1} & \frac{\sin rA}{\sin(A-rA)} &:& \frac{\sin rB}{\sin(B-rB)} &:& \frac{\sin rC}{\sin(C-rC)} \\[4pt]

\implies \displaystyle \lim_{r \to 1} & \frac{(1-r)\sin rA}{\sin(A-rA)} &:& \frac{(1-r)\sin rB}{\sin(B-rB)} &:& \frac{(1-r)\sin rC}{\sin(C-rC)} \\[4pt]

\implies \displaystyle \lim_{r \to 1} & \frac{(1-r)A\sin rA}{A\sin(A-rA)} &:& \frac{(1-r)B\sin rB}{B\sin(B-rB)} &:& \frac{(1-r)C\sin rC}{C\sin(C-rC)}

\end{array}

Since \lim_{r \to 1} \tfrac{(1-r)A}{\sin(A-rA)} = \lim_{r \to 1} \tfrac{(1-r)B}{\sin(B-rB)} = \lim_{r \to 1} \tfrac{(1-r)C}{\sin(C-rC)} = 1,

\implies \frac{\sin A}{A}\ :\ \frac{\sin B}{B}\ :\ \frac{\sin C}{C} \quad = \quad \frac{a}{A}\ :\ \frac{b}{B}\ :\ \frac{c}{C}

References

{{reflist}}

{{Douglas Hofstadter}}

Category:Triangle centers

Category:1992 introductions