Holmes–Thompson volume#Normalization and comparison with Euclidean and Hausdorff measure

In geometry of normed spaces, the Holmes–Thompson volume is a notion of volume that allows to compare sets contained in different normed spaces (of the same dimension). It was introduced by Raymond D. Holmes and Anthony Charles Thompson.{{ cite journal | title = N-dimensional area and content in Minkowski spaces | first1 = Raymond D. | last1 = Holmes | first2 = Anthony Charles | last2 = Thompson | journal = Pacific J. Math. | volume = 85 | number = 1 | year = 1979 | pages = 77–110 | url=http://projecteuclid.org/euclid.pjm/1102784083 | mr=0571628 | doi=10.2140/pjm.1979.85.77| doi-access = free }}

Definition

The Holmes–Thompson volume \operatorname{Vol}_\text{HT}(A) of a measurable set A\subseteq R^n in a normed space (\mathbb{R}^n,\|-\|) is defined as the 2n-dimensional measure of the product set A\times B^*, where B^* \subseteq \mathbb{R}^n is the dual unit ball of \|-\| (the unit ball of the dual norm \|-\|^* ).

Symplectic (coordinate-free) definition

The Holmes–Thompson volume can be defined without coordinates: if A\subseteq V is a measurable set in an n-dimensional real normed space (V,\|-\|), then its Holmes–Thompson volume is defined as the absolute value of the integral of the volume form \frac 1{n!}\overbrace{\omega\wedge\cdots\wedge\omega}^n over the set A\times B^* ,

:\operatorname{Vol}_{HT}(A)=\left|\int_{A\times B^*}\frac1{n!}\omega^n\right|

where \omega is the standard symplectic form on the vector space V\times V^* and B^*\subseteq V^* is the dual unit ball of \|-\|.

This definition is consistent with the previous one, because if each point x\in V is given linear coordinates (x_i)_{0\leq i and each covector \xi \in V^* is given the dual coordinates (xi_i)_{0\leq i (so that \xi(x)=\sum_i \xi_i x_i ), then the standard symplectic form is \omega=\sum_i \mathrm d x_i \wedge \mathrm d \xi_i , and the volume form is

: \frac 1{n!} \omega^n = \pm\; \mathrm d x_0 \wedge \dots \wedge \mathrm d x_{n-1} \wedge \mathrm d \xi_0 \wedge \dots \wedge \mathrm d \xi_{n-1},

whose integral over the set A\times B^* \subseteq V\times V^* \cong \mathbb R^n \times \mathbb R^n is just the usual volume of the set in the coordinate space \mathbb R ^{2n} .

Volume in Finsler manifolds

More generally, the Holmes–Thompson volume of a measurable set A in a Finsler manifold (M,F) can be defined as

::\operatorname{Vol}_\text{HT}(A):=\int_{B^*A} \frac 1{n!} \omega ^n,

where B^*A=\{(x,p)\in \mathrm T^*M:\ x\in A\text{ and }\xi\in \mathrm T^*_xM\text{ with }\|\xi\|_x^*\leq 1\} and \omega is the standard symplectic form on the cotangent bundle \mathrm T^*M . Holmes–Thompson's definition of volume is appropriate for establishing links between the total volume of a manifold and the length of the geodesics (shortest curves) contained in it (such as systolic inequalities{{cite journal |title=Local extremality of the Calabi–Croke sphere for the length of the shortest closed geodesic |last=Sabourau |first=Stéphane |journal=Journal of the London Mathematical Society |volume=82 |issue=3 |year=2010 |pages=549–562 |arxiv=0907.2223 |doi=10.1112/jlms/jdq045|s2cid=1156703 }}{{cite journal |title=Isosystolic inequalities for optical hypersurfaces |last1=Álvarez Paiva |first1=Juan-Carlos |last2=Balacheff |first2=Florent |last3=Tzanev |first3=Kroum |journal=Advances in Mathematics |volume=301 |year=2016 |pages=934–972 |arxiv=1308.5522 |doi=10.1016/j.aim.2016.07.003|doi-access=free|s2cid=119175687 }} and filling volumes{{cite journal |title=Volume Comparison via Boundary Distances |journal=Proceedings of ICM |year=2010 |last1=Ivanov | first1=Sergei V. |arxiv=1004.2505}}{{cite journal |title=On two-dimensional minimal fillings |language = ru |first=Sergei V. |last=Ivanov |journal=Algebra i Analiz |volume=13 |number=1 |pages=26–38 |year=2001}}{{cite journal |title=On two-dimensional minimal fillings |language=en | first = Sergei V. |last=Ivanov |journal=St. Petersburg Math. J. |volume=13 |number=1 |year=2002 |pages=17–25 |mr=1819361}}{{ cite journal |title=Filling minimality of Finslerian 2-discs |first=Sergei V. |last=Ivanov |journal=Proc. Steklov Inst. Math. |volume=273 |number=1 |pages=176–190 |year=2011 |doi=10.1134/S0081543811040079 | arxiv = 0910.2257|s2cid=115167646 }}{{cite journal |title=Local monotonicity of Riemannian and Finsler volume with respect to boundary distances |last=Ivanov |first=Sergei V. |journal=Geometriae Dedicata |volume=164 |issue=2013 |year=2013 |pages=83–96 |arxiv=1109.4091 |doi=10.1007/s10711-012-9760-y|s2cid=119130237 }}) because, according to Liouville's theorem, the geodesic flow preserves the symplectic volume of sets in the cotangent bundle.

= Computation using coordinates =

If M is a region in coordinate space \mathbb R^n , then the tangent and cotangent spaces at each point x\in M can both be identified with \mathbb R^n . The Finsler metric is a continuous function F:TM=M\times\mathbb R^n \to [0,+\infty) that yields a (possibly asymmetric) norm F_x:v \in \mathbb R^n\mapsto \|v\|_x=F(x,v) for each point x\in M . The Holmes–Thompson volume of a subset {{math|AM}} can be computed as

:: \operatorname{Vol}_{\textrm{HT}}(A) = |B^*A| = \int_A |B^*_x| \,\mathrm d\operatorname{Vol_n}(x)

where for each point x\in M , the set B^*_x \subseteq \mathbb R^n is the dual unit ball of F_x (the unit ball of the dual norm F_x^* = \|-\|_x^* ), the bars |-| denote the usual volume of a subset in coordinate space, and \mathrm d\operatorname{Vol_n}(x) is the product of all {{math|n}} coordinate differentials \mathrm dx_i .

This formula follows, again, from the fact that the {{math|2n}}-form \textstyle{ \frac 1{n!} \omega ^n } is equal (up to a sign) to the product of the differentials of all n coordinates \mathrm x_i and their dual coordinates \xi_i . The Holmes–Thompson volume of {{math|A}} is then equal to the usual volume of the subset B^*A = \{(x,\xi)\in M\times \mathbb R^n : \xi\in B^*_x \} of \mathbb R^{2n} .

Santaló's formula

If A is a simple region in a Finsler manifold (that is, a region homeomorphic to a ball, with convex boundary and a unique geodesic along A joining each pair of points of A ), then its Holmes–Thompson volume can be computed in terms of the path-length distance (along A ) between the boundary points of A using Santaló's formula, which in turn is based on the fact that the geodesic flow on the cotangent bundle is Hamiltonian.

{{cite encyclopedia |title=Santaló formula |encyclopedia=Encyclopedia of Mathematics |url=http://www.encyclopediaofmath.org/index.php?title=Santal%C3%B3_formula&oldid=23516}}

Normalization and comparison with Euclidean and Hausdorff measure

The original authors used a different normalization for Holmes–Thompson volume. They divided the value given here by the volume of the Euclidean n-ball, to make Holmes–Thompson volume coincide with the product measure in the standard Euclidean space (\mathbb{R}^n,\|-\|_2). This article does not follow that convention.

If the Holmes–Thompson volume in normed spaces (or Finsler manifolds) is normalized, then it never exceeds the Hausdorff measure. This is a consequence of the Blaschke-Santaló inequality. The equality holds if and only if the space is Euclidean (or a Riemannian manifold).

References

{{cite book |last1=Álvarez-Paiva |first1=Juan-Carlos |last2=Thompson |first2=Anthony C. |editor1-last=Bao |editor1-first=David | editor2-last=Bryant|editor2-first=Robert L.|editor3-last=Chern|editor3-first=Shiing-Shen|editor4-last=Shen|editor4-first=Zhongmin|title=A sampler of Riemann-Finsler geometry |publisher=Cambridge University Press |series=MSRI Publications|volume=50|year=2004 |pages=1–48 |chapter=Chapter 1: Volumes on Normed and Finsler Spaces|chapter-url=http://library.msri.org/books/Book50/files/02AT.pdf|isbn=0-521-83181-4|mr=2132656}}

{{reflist}}

{{DEFAULTSORT:Holmes-Thompson volume}}

Category:Normed spaces

Category:Differential geometry

Category:Measure theory

Category:Finsler geometry

Category:Integral geometry

Category:Systolic geometry