Indefinite product

{{Short description|Mathematical Concept}}

In mathematics, the indefinite product operator is the inverse operator of Q(f(x)) = \frac{f(x+1)}{f(x)}. It is a discrete version of the geometric integral of geometric calculus, one of the non-Newtonian calculi.

Thus

:Q\left( \prod_x f(x) \right) = f(x) \, .

More explicitly, if \prod_x f(x) = F(x) , then

:\frac{F(x+1)}{F(x)} = f(x) \, .

If F(x) is a solution of this functional equation for a given f(x), then so is CF(x) for any constant C. Therefore, each indefinite product actually represents a family of functions, differing by a multiplicative constant.

Period rule

If T is a period of function f(x) then

:\prod _x f(Tx)=C f(Tx)^{x-1}

Connection to indefinite sum

Indefinite product can be expressed in terms of indefinite sum:

:\prod _x f(x)= \exp \left(\sum _x \ln f(x)\right)

Alternative usage

Some authors use the phrase "indefinite product" in a slightly different but related way to describe a product in which the numerical value of the upper limit is not given.[http://www.risc.uni-linz.ac.at/people/mkauers/publications/kauers05c.pdf Algorithms for Nonlinear Higher Order Difference Equations], Manuel Kauers e.g.

:\prod_{k=1}^n f(k).

Rules

:\prod _x f(x)g(x) = \prod _x f(x)\prod _x g(x)

:\prod _x f(x)^a = \left(\prod _x f(x)\right)^a

:\prod _x a^{f(x)} = a^{\sum _x f(x)}

List of indefinite products

This is a list of indefinite products \prod _x f(x) . Not all functions have an indefinite product which can be expressed in elementary functions.

:\prod _x a = C a^x

:\prod _x x = C\, \Gamma (x)

:\prod _x \frac{x+1}{x} = C x

:\prod _x \frac{x+a}{x} = \frac{C\,\Gamma (x+a)}{\Gamma (x)}

:\prod _x x^a = C\, \Gamma (x)^a

:\prod _x ax = C a^x \Gamma (x)

:\prod _x a^x = C a^{\frac{x}{2} (x-1)}

:\prod _x a^{\frac{1}{x}} = C a^{\frac{\Gamma'(x)}{\Gamma(x)}}

:\prod _x x^x= C\, e^{\zeta^\prime(-1,x)-\zeta^\prime(-1)}= C\,e^{\psi^{(-2)}(z)+\frac{z^2-z}{2}-\frac z2 \ln (2\pi)}= C\, \operatorname{K}(x)

:(see K-function)

:\prod _x \Gamma(x) = \frac{C\,\Gamma(x)^{x-1}}{\operatorname{K}(x)} = C\,\Gamma(x)^{x-1} e^{\frac z2 \ln (2\pi)-\frac{z^2-z}{2}-\psi^{(-2)}(z)}= C\, \operatorname{G}(x)

:(see Barnes G-function)

:\prod _x \operatorname{sexp}_a(x) = \frac{C\, (\operatorname{sexp}_a (x))'}{\operatorname{sexp}_a (x)(\ln a)^x}

:(see super-exponential function)

:\prod _x x+a = C\,\Gamma (x+a)

:\prod _x ax+b = C\, a^x \Gamma \left(x+\frac{b}{a}\right)

:\prod _x ax^2+bx = C\,a^x \Gamma (x) \Gamma \left(x+\frac{b}{a}\right)

:\prod _x x^2+1 = C\, \Gamma (x-i) \Gamma (x+i)

:\prod _x x+\frac {1}{x} = \frac{C\, \Gamma (x-i) \Gamma (x+i)}{\Gamma (x)}

:\prod _x \csc x \sin (x+1) = C \sin x

:\prod _x \sec x \cos (x+1) = C \cos x

:\prod _x \cot x \tan (x+1) = C \tan x

:\prod _x \tan x \cot (x+1) = C \cot x

See also

References

{{reflist}}

Further reading

  • http://reference.wolfram.com/mathematica/ref/Product.html -Indefinite products with Mathematica
  • [https://archive.today/20070812032158/http://www.math.rwth-aachen.de/MapleAnswers/660.html] - bug in Maple V to Maple 8 handling of indefinite product
  • [https://web.archive.org/web/20110617053801/http://www.math.tu-berlin.de/~mueller/HowToAdd.pdf Markus Müller. How to Add a Non-Integer Number of Terms, and How to Produce Unusual Infinite Summations]
  • [https://arxiv.org/abs/math/0502109 Markus Mueller, Dierk Schleicher. Fractional Sums and Euler-like Identities]