K-function

{{DISPLAYTITLE:K-function}}

{{for|the {{mvar|k}}-function|Bateman function}}

In mathematics, the {{mvar|K}}-function, typically denoted K(z), is a generalization of the hyperfactorial to complex numbers, similar to the generalization of the factorial to the gamma function.

Definition

Formally, the {{mvar|K}}-function is defined as

:K(z)=(2\pi)^{-\frac{z-1}2} \exp\left[\binom{z}{2}+\int_0^{z-1} \ln \Gamma(t + 1)\,dt\right].

It can also be given in closed form as

:K(z)=\exp\bigl[\zeta'(-1,z)-\zeta'(-1)\bigr]

where {{math|ζ′(z)}} denotes the derivative of the Riemann zeta function, {{math|ζ(a,z)}} denotes the Hurwitz zeta function and

:\zeta'(a,z)\ \stackrel{\mathrm{def}}{=}\ \left.\frac{\partial\zeta(s,z)}{\partial s}\right|_{s=a},\ \ \zeta(s,q) = \sum_{k=0}^\infty (k+q)^{-s}

Another expression using the polygamma function is{{Citation| url =https://www.cs.cmu.edu/~adamchik/articles/polyg.htm | first=Victor S. | last =Adamchik | title =PolyGamma Functions of Negative Order | url-status =dead | archive-url =https://web.archive.org/web/20160303165448/http://www.cs.cmu.edu/~adamchik/articles/polyg.htm | archive-date=2016-03-03 | journal =Journal of Computational and Applied Mathematics | volume =100 | year=1998 | issue=2 | pages =191–199| doi=10.1016/S0377-0427(98)00192-7 | url-access =subscription }}

:K(z)=\exp\left[\psi^{(-2)}(z)+\frac{z^2-z}{2}-\frac {z}{2} \ln 2\pi \right]

Or using the balanced generalization of the polygamma function:{{Citation| url =http://www.math.tulane.edu/~vhm/papers_html/genoff.pdf | title=A Generalized polygamma function | archive-url =https://web.archive.org/web/20230514164433/http://www.math.tulane.edu/~vhm/papers_html/genoff.pdf | archive-date =2023-05-14 | first1 =Olivier | last1 =Espinosa | first2 =Victor Hugo | last2 =Moll | author-link2 =Victor Moll | journal =Integral Transforms and Special Functions | date=2004 | volume =15 | issue =2 | orig-date =April 2004 | pages =101–115 | doi=10.1080/10652460310001600573 | url-status =live}}

:K(z)=A \exp\left[\psi(-2,z)+\frac{z^2-z}{2}\right]

where {{mvar|A}} is the Glaisher constant.

Similar to the Bohr-Mollerup Theorem for the gamma function, the log K-function is the unique (up to an additive constant) eventually 2-convex solution to the equation \Delta f(x)=x\ln(x) where \Delta is the forward difference operator.{{Cite journal | title=A Generalization of Bohr-Mollerup's Theorem for Higher Order Convex Functions: a Tutorial | journal=Bitstream| url=https://orbilu.uni.lu/bitstream/10993/51793/1/AGeneralizationOfBohrMollerupTutorial.pdf |pages=455–481 | archive-url =https://web.archive.org/web/20230405060849/https://orbilu.uni.lu/bitstream/10993/51793/1/AGeneralizationOfBohrMollerupTutorial.pdf | archive-date =2023-04-05 | url-status =live| last1=Marichal| first1=Jean-Luc| last2=Zenaïdi| first2=Naïm| date=2024| volume=98| issue=2| doi=10.1007/s00010-023-00968-9| arxiv=2207.12694}}

Properties

It can be shown that for {{math|α > 0}}:

:\int_\alpha^{\alpha+1}\ln K(x)\,dx-\int_0^1\ln K(x)\,dx=\tfrac{1}{2}\alpha^2\left(\ln\alpha-\tfrac{1}{2}\right)

This can be shown by defining a function {{mvar|f}} such that:

:f(\alpha)=\int_\alpha^{\alpha+1}\ln K(x)\,dx

Differentiating this identity now with respect to {{mvar|α}} yields:

:f'(\alpha)=\ln K(\alpha+1)-\ln K(\alpha)

Applying the logarithm rule we get

:f'(\alpha)=\ln\frac{K(\alpha+1)}{K(\alpha)}

By the definition of the {{mvar|K}}-function we write

:f'(\alpha)=\alpha\ln\alpha

And so

:f(\alpha)=\tfrac12\alpha^2\left(\ln\alpha-\tfrac12\right)+C

Setting {{math|α {{=}} 0}} we have

:\int_0^1 \ln K(x)\,dx=\lim_{t\rightarrow0}\left[\tfrac12 t^2\left(\ln t-\tfrac12\right)\right]+C \ =C

Now one can deduce the identity above.

The {{mvar|K}}-function is closely related to the gamma function and the Barnes G-function; for natural numbers {{mvar|n}}, we have

:K(n)=\frac{\bigl(\Gamma(n)\bigr)^{n-1}}{G(n)}.

More prosaically, one may write

:K(n+1)=1^1 \cdot 2^2 \cdot 3^3 \cdots n^n.

The first values are

:1, 4, 108, 27648, 86400000, 4031078400000, 3319766398771200000, ... {{OEIS|A002109}}.

Similar to the multiplication formula for the gamma function:

:\prod_{j=1}^{n-1}\Gamma\left(\frac jn \right) = (2 \pi)^{\frac{n-1}{2}} n^{-\frac{n}{2}}

there exists a multiplication formula for the K-Function involving Glaisher's constant:{{Cite journal |last1=Sondow |first1=Jonathan |last2=Hadjicostas |first2=Petros |date=2006-10-16 |title=The generalized-Euler-constant function γ(z) and a generalization of Somos's quadratic recurrence constant |journal=Journal of Mathematical Analysis and Applications |language=en |volume=332 |pages=292–314 |arxiv=math/0610499 |doi=10.1016/j.jmaa.2006.09.081}}

: \prod_{j=1}^{n-1}K\left(\frac jn \right) = A^{\frac{n^2-1}{n}}n^{-\frac{1}{12n}}e^{\frac{1-n^2}{12n}}

References