Inverse matrix gamma distribution

{{one source |date=April 2024}}

{{Probability distribution|

name =Inverse matrix gamma|

type =density|

pdf_image =|

cdf_image =|

notation ={\rm IMG}_{p}(\alpha,\beta,\boldsymbol\Psi)|

parameters = \alpha > (p - 1)/2 shape parameter

\beta > 0 scale parameter

\boldsymbol\Psi scale (positive-definite real p\times p matrix)

|

support =\mathbf{X} positive-definite real p\times p matrix|

pdf =\frac{|\boldsymbol\Psi|^{\alpha}}{\beta^{p\alpha}\Gamma_p(\alpha)} |\mathbf{X}|^{-\alpha-(p+1)/2}\exp\left(-\frac{1}{\beta}{\rm tr}\left(\boldsymbol\Psi\mathbf{X}^{-1}\right)\right)

cdf =|

mean =|

median =|

mode =|

variance =|

skewness =|

kurtosis =|

entropy =|

mgf =|

char =|

}}

In statistics, the inverse matrix gamma distribution is a generalization of the inverse gamma distribution to positive-definite matrices.{{cite journal |last=Iranmanesha |first=Anis |first2=M. |last2=Arashib |first3=S. M. M. |last3=Tabatabaeya |year=2010 |title=On Conditional Applications of Matrix Variate Normal Distribution |journal=Iranian Journal of Mathematical Sciences and Informatics |volume=5 |issue=2 |pages=33–43 |url=https://www.sid.ir/En/Journal/ViewPaper.aspx?ID=220524 }} It is a more general version of the inverse Wishart distribution, and is used similarly, e.g. as the conjugate prior of the covariance matrix of a multivariate normal distribution or matrix normal distribution. The compound distribution resulting from compounding a matrix normal with an inverse matrix gamma prior over the covariance matrix is a generalized matrix t-distribution.{{citation needed|date=May 2012}}

This reduces to the inverse Wishart distribution with \nu degrees of freedom when \beta=2, \alpha=\frac{\nu}{2}.

See also

References