Isotopes of carbon#Carbon-17
{{Short description|none}}
{{Redirect|Carbon-15|the firearm|Carbon 15}}
{{More citations needed|date=May 2018}}
{{Infobox carbon isotopes}}
Carbon (6C) has 14 known isotopes, from {{SimpleNuclide|Carbon|8}} to {{SimpleNuclide|Carbon|20}} as well as {{SimpleNuclide|Carbon|22}}, of which only {{SimpleNuclide|Carbon|12|link=yes}} and {{SimpleNuclide|Carbon|13|link=yes}} are stable. The longest-lived radioisotope is {{SimpleNuclide|Carbon|14|link=yes}}, with a half-life of {{val|5.70|(3)|e=3}} years. This is also the only carbon radioisotope found in nature, as trace quantities are formed cosmogenically by the reaction {{SimpleNuclide|Nitrogen|14}} + {{Subatomic particle|neutron}} → {{SimpleNuclide|Carbon|14}} + {{SimpleNuclide|Hydrogen|1}}. The most stable artificial radioisotope is {{SimpleNuclide|Carbon|11}}, which has a half-life of {{val|20.3402|(53)|u=min}}. All other radioisotopes have half-lives under 20 seconds, most less than 200 milliseconds. The least stable isotope is {{SimpleNuclide|Carbon|8}}, with a half-life of {{val|3.5|(1.4)|e=-21|u=s}}. Light isotopes tend to decay into isotopes of boron and heavy ones tend to decay into isotopes of nitrogen.
List of isotopes
{{Anchor|Carbon-21|Carbon-23}}
{{Isotopes table
|symbol=C
|refs=NUBASE2020, AME2020 II
|notes=mass#, unc(), var[], spin(), spin#, resonance, daughter-st, EC, n, p
}}
|-id=Carbon-8
| {{SimpleNuclide|Carbon|8}}
| style="text-align:right" | 6
| style="text-align:right" | 2
| {{val|8.037643|(20)}}
| {{val|3.5|(1.4)|u=zs}}
[{{val|230|(50)|u=keV}}]
| 2p
| {{SimpleNuclide|Beryllium|6}}Subsequently decays by double proton emission to {{SimpleNuclide|Helium|4}} for a net reaction of {{SimpleNuclide|Carbon|8}} → {{SimpleNuclide|Helium|4}} + 4{{SimpleNuclide|Hydrogen|1}}
| 0+
|
|
|-id=Carbon-9
| rowspan=3|{{SimpleNuclide|Carbon|9}}
| rowspan=3 style="text-align:right" | 6
| rowspan=3 style="text-align:right" | 3
| rowspan=3|{{val|9.0310372|(23)}}
| rowspan=3|{{val|126.5|(9)|u=ms}}
| β+ ({{val|54.1|(1.7)|u=%}})
| {{SimpleNuclide|Boron|9}}
| rowspan=3|3/2−
| rowspan=3|
| rowspan=3|
|-
| β+α ({{val|38.4|(1.6)|u=%}})
| {{SimpleNuclide|Lithium|5}}Immediately decays by proton emission to {{SimpleNuclide|Helium|4}} for a net reaction of {{SimpleNuclide|Carbon|9}} → 2 {{SimpleNuclide|Helium|4}} + {{SimpleNuclide|Hydrogen|1}} + {{Subatomic particle|positron}}
|-
| β+p ({{val|7.5|(6)|u=%}})
| {{SimpleNuclide|Beryllium|8}}Immediately decays into two {{SimpleNuclide|Helium|4}} atoms for a net reaction of {{SimpleNuclide|Carbon|9}} → 2 {{SimpleNuclide|Helium|4}} + {{SimpleNuclide|Hydrogen|1}} + {{Subatomic particle|positron}}
|-id=Carbon-10
| {{SimpleNuclide|Carbon|10}}
| style="text-align:right" | 6
| style="text-align:right" | 4
| {{val|10.01685322|(8)}}
| {{val|19.3011|(15)|u=s}}
| β+
| {{SimpleNuclide|Boron|10}}
| 0+
|
|
|-
| rowspan=1|{{SimpleNuclide|Carbon|11}}Used for labeling molecules in PET scans
| rowspan=1 style="text-align:right" | 6
| rowspan=1 style="text-align:right" | 5
| rowspan=1 |{{val|11.01143260|(6)}}
| rowspan=1 |{{val|20.3402|(53)|u=min}}
| β+
| {{SimpleNuclide|Boron|11}}
| rowspan=1 |3/2−
| rowspan=1 |
| rowspan=1 |
|-id=Carbon-11m
| style="text-indent:1em" |{{SimpleNuclide|Carbon|11m}}
| colspan=3 style="text-indent:2em" |{{val|12160|(40)|u=keV}}
|
| {{SimpleNuclide|Boron|10}} ?
| 1/2+
|
|
|-id=Carbon-12
| {{SimpleNuclide|Carbon|12|link=yes}}
| style="text-align:right" | 6
| style="text-align:right" | 6
| 12 exactlyThe unified atomic mass unit is defined as 1/12 of the mass of an unbound atom of carbon-12 in its ground state.
| colspan=3 align=center|Stable
| 0+
| [{{val|0.9884}}, {{val|0.9904}}]{{cite web |title=Atomic Weight of Carbon |url=https://ciaaw.org/carbon.htm |website=CIAAW}}
|-id=Carbon-13
| {{SimpleNuclide|Carbon|13|link=yes}}Ratio of 12C to 13C used to measure biological productivity in ancient times and differing types of photosynthesis
| style="text-align:right" | 6
| style="text-align:right" | 7
| {{val|13.003354835336|(252)}}
| colspan=3 align=center|Stable
| 1/2−
| [{{val|0.0096}}, {{val|0.0116}}]
|-id=Carbon-14
| {{SimpleNuclide|Carbon|14|link=yes}}Has an important use in radiodating (see carbon dating)
| style="text-align:right" | 6
| style="text-align:right" | 8
| {{val|14.003241989|(4)}}
| {{val|5.70|(3)|e=3|u=y}}
| β−
| {{SimpleNuclide|Nitrogen|14}}
| 0+
| TracePrimarily cosmogenic, produced by neutrons striking atoms of {{SimpleNuclide|Nitrogen|14|link=yes}} ({{SimpleNuclide|Nitrogen|14}} + {{Subatomic particle|neutron}} → {{SimpleNuclide|Carbon|14}} + {{SimpleNuclide|Hydrogen|1}})
| < 10−12
|-id=Carbon-14m
| style="text-indent:1em" |{{SimpleNuclide|Carbon|14m}}
| colspan="3" style="text-indent:2em" |{{val|22100|(100)|u=keV}}
|
| IT
| {{SimpleNuclide|Carbon|14}}
| (2−)
|
|
|-id=Carbon-15
| {{SimpleNuclide|Carbon|15}}
| style="text-align:right" | 6
| style="text-align:right" | 9
| {{val|15.0105993|(9)}}
| {{val|2.449|(5)|u=s}}
| β−
| {{SimpleNuclide|Nitrogen|15}}
| 1/2+
|
|
|-id=Carbon-16
| rowspan=2|{{SimpleNuclide|Carbon|16}}
| rowspan=2 style="text-align:right" | 6
| rowspan=2 style="text-align:right" | 10
| rowspan=2|{{val|16.014701|(4)}}
| rowspan=2|{{val|750|(6)|u=ms}}
| β−n ({{val|99.0|(3)|u=%}})
| {{SimpleNuclide|Nitrogen|15}}
| rowspan=2|0+
| rowspan=2|
| rowspan=2|
|-
| β− ({{val|1.0|(3)|u=%}})
| {{SimpleNuclide|Nitrogen|16}}
|-id=Carbon-17
| rowspan=3|{{SimpleNuclide|Carbon|17}}
| rowspan=3 style="text-align:right" | 6
| rowspan=3 style="text-align:right" | 11
| rowspan=3|{{val|17.022579|(19)}}
| rowspan=3|{{val|193|(6)|u=ms}}
| β− ({{val|71.6|(1.3)|u=%}})
| {{SimpleNuclide|Nitrogen|17}}
| rowspan=3|3/2+
| rowspan=3|
| rowspan=3|
|-
| β−n ({{val|28.4|(1.3)|u=%}})
| {{SimpleNuclide|Nitrogen|16}}
|-
| {{SimpleNuclide|Nitrogen|15}} ?
|-id=Carbon-18
| rowspan=3|{{SimpleNuclide|Carbon|18}}
| rowspan=3 style="text-align:right" | 6
| rowspan=3 style="text-align:right" | 12
| rowspan=3|{{val|18.02675|(3)}}
| rowspan=3|{{val|92|(2)|u=ms}}
| β− ({{val|68.5|(1.5)|u=%}})
| {{SimpleNuclide|Nitrogen|18}}
| rowspan=3|0+
| rowspan=3|
| rowspan=3|
|-
| β−n ({{val|31.5|(1.5)|u=%}})
| {{SimpleNuclide|Nitrogen|17}}
|-
| {{SimpleNuclide|Nitrogen|16}} ?
|-id=Carbon-19
| rowspan=3|{{SimpleNuclide|Carbon|19}}Has 1 halo neutron
| rowspan=3 style="text-align:right" | 6
| rowspan=3 style="text-align:right" | 13
| rowspan=3|{{val|19.03480|(11)}}
| rowspan=3|{{val|46.2|(2.3)|u=ms}}
| β−n ({{val|47|(3)|u=%}})
| {{SimpleNuclide|Nitrogen|18}}
| rowspan=3|1/2+
| rowspan=3|
| rowspan=3|
|-
| β− ({{val|46.0|(4.2)|u=%}})
| {{SimpleNuclide|Nitrogen|19}}
|-
| β−2n ({{val|7|(3)|u=%}})
| {{SimpleNuclide|Nitrogen|17}}
|-id=Carbon-20
| rowspan=3|{{SimpleNuclide|Carbon|20}}
| rowspan=3 style="text-align:right" | 6
| rowspan=3 style="text-align:right" | 14
| rowspan=3|{{val|20.04026|(25)}}
| rowspan=3|{{val|16|(3)|u=ms}}
| β−n ({{val|70|(11)|u=%}})
| {{SimpleNuclide|Nitrogen|19}}
| rowspan=3|0+
| rowspan=3|
| rowspan=3|
|-
| β−2n (< {{val|18.6|u=%}})
| {{SimpleNuclide|Nitrogen|18}}
|-
| β− (> {{val|11.4|u=%}})
| {{SimpleNuclide|Nitrogen|20}}
|-id=Carbon-22
| rowspan=3|{{SimpleNuclide|Carbon|22}}Has 2 halo neutrons
| rowspan=3 style="text-align:right" | 6
| rowspan=3 style="text-align:right" | 16
| rowspan=3|{{val|22.05755|(25)}}
| rowspan=3|{{val|6.2|(1.3)|u=ms}}
| β−n ({{val|61|(14)|u=%}})
| {{SimpleNuclide|Nitrogen|21}}
| rowspan=3|0+
| rowspan=3|
| rowspan=3|
|-
| β−2n (< {{val|37|u=%}})
| {{SimpleNuclide|Nitrogen|20}}
|-
| β− (> {{val|2|u=%}})
| {{SimpleNuclide|Nitrogen|22}}
{{Isotopes table/footer}}
Carbon-11
Carbon-11 or {{SimpleNuclide|Carbon|11}} is a radioactive isotope of carbon that decays to boron-11. This decay mainly occurs due to positron emission, with around 0.19–0.23% of decays instead occurring by electron capture.{{cite journal |last1=Scobie |first1=J. |last2=Lewis |first2=G. M. |title=K-capture in carbon 11 |journal=Philosophical Magazine |date=1 September 1957 |volume=2 |issue=21 |pages=1089–1099 |doi=10.1080/14786435708242737 |bibcode=1957PMag....2.1089S}}{{cite journal |last1=Campbell |first1=J. L. |last2=Leiper |first2=W. |last3=Ledingham |first3=K. W. D. |last4=Drever |first4=R. W. P. |title=The ratio of K-capture to positron emission in the decay of 11C |journal=Nuclear Physics A |volume=96 |issue=2 |pages=279–287 |doi=10.1016/0375-9474(67)90712-9 |bibcode=1967NuPhA..96..279C |date=1967-04-11}} It has a half-life of {{val|20.3402|(53)|u=minutes}}.
:{{SimpleNuclide|Carbon|11}} → {{SimpleNuclide|link=yes|Boron|11}} + {{SubatomicParticle|link=yes|positron}} + {{SubatomicParticle|link=yes|Electron neutrino}} + {{Val|0.96|ul=MeV}}
:{{SimpleNuclide|Carbon|11}} + {{SubatomicParticle|link=yes|Electron}} → {{SimpleNuclide|link=|Boron|11}} + {{SubatomicParticle|link=|Electron neutrino}} + {{Val|1.98|u=MeV}}
It is produced by hitting nitrogen with protons of around 16.5 MeV in a cyclotron. The causes the endothermic reaction{{cite web |title=Carbon-11 Production and Transformation |url=https://encyclopedia.pub/entry/54549 |website=Scholarly Community Encyclopedia}}{{cite journal|display-authors=etal |last1=Lu |first1=Shuiyu |title=Gas Phase Transformations in Carbon-11 Chemistry |journal=Int. J. Mol. Sci. |date=Jan 18, 2024 |volume=25 |issue=2 |page=1167 |doi=10.3390/ijms25021167 |doi-access=free |pmid=38256240 |pmc=10816134 }}
:{{SimpleNuclide|Nitrogen|14}} + {{SubatomicParticle|link=yes|proton}} → {{SimpleNuclide|Carbon|11}} + {{SimpleNuclide|Helium|4}} − 2.92 MeV
It can also be produced by fragmentation of {{SimpleNuclide|Carbon|12}} by shooting high-energy {{SimpleNuclide|Carbon|12}} at a target.{{cite web |author=Daria Boscolo |display-authors=etal|title=First image-guided treatment of a mouse tumor with radioactive ion beams |date=Sep 2024|arxiv=2409.14898|url=https://arxiv.org/abs/2409.14898}}
Carbon-11 is commonly used as a radioisotope for the radioactive labeling of molecules in positron emission tomography. Among the many molecules used in this context are the radioligands DASB and 25I-NBOMe.
Natural isotopes
{{Main|Carbon-12|Carbon-13|Carbon-14}}
There are three naturally occurring isotopes of carbon: 12, 13, and 14. {{SimpleNuclide|Carbon|12}} and {{SimpleNuclide|Carbon|13}} are stable, occurring in a natural proportion of approximately 93:1. {{SimpleNuclide|Carbon|14}} is produced by thermal neutrons from cosmic radiation in the upper atmosphere, and is transported down to Earth to be absorbed by living biological material. Isotopically, {{SimpleNuclide|Carbon|14}} constitutes a negligible part; but, since it is radioactive with a half-life of {{val|5.70|(3)|e=3}} years, it is radiometrically detectable. Since dead tissue does not absorb {{SimpleNuclide|Carbon|14}}, the amount of {{SimpleNuclide|Carbon|14}} is one of the methods used within the field of archeology for radiometric dating of biological material.
Paleoclimate
{{SimpleNuclide|Carbon|12}} and {{SimpleNuclide|Carbon|13}} are measured as the isotope ratio δ13C in benthic foraminifera and used as a proxy for nutrient cycling and the temperature dependent air–sea exchange of CO2 (ventilation).{{cite journal |last1=Lynch-Stieglitz |first1=Jean |last2=Stocker |first2=Thomas F. |last3=Broecker |first3=Wallace S. |last4=Fairbanks |first4=Richard G. |title=The influence of air-sea exchange on the isotopic composition of oceanic carbon: Observations and modeling |journal=Global Biogeochemical Cycles |date=1995 |volume=9 |issue=4 |pages=653–665 |doi=10.1029/95GB02574 |bibcode=1995GBioC...9..653L |s2cid=129194624 |url=https://boris.unibe.ch/158803/}} Plants find it easier to use the lighter isotope ({{SimpleNuclide|Carbon|12}}) when they convert sunlight and carbon dioxide into food. For example, large blooms of plankton (free-floating organisms) absorb large amounts of {{SimpleNuclide|Carbon|12}} from the oceans. Originally, the {{SimpleNuclide|Carbon|12}} was mostly incorporated into the seawater from the atmosphere. If the oceans that the plankton live in are stratified (meaning that there are layers of warm water near the top, and colder water deeper down), then the surface water does not mix very much with the deeper waters, so that when the plankton dies, it sinks and takes away {{SimpleNuclide|Carbon|12}} from the surface, leaving the surface layers relatively rich in {{SimpleNuclide|Carbon|13}}. Where cold waters well up from the depths (such as in the North Atlantic), the water carries {{SimpleNuclide|Carbon|12}} back up with it; when the ocean was less stratified than today, there was much more {{SimpleNuclide|Carbon|12}} in the skeletons of surface-dwelling species. Other indicators of past climate include the presence of tropical species and coral growth rings.Tim Flannery The weather makers: the history & future of climate change, The Text Publishing Company, Melbourne, Australia. {{ISBN|1-920885-84-6}}
Tracing food sources and diets
The quantities of the different isotopes can be measured by mass spectrometry and compared to a standard; the result (e.g., the delta of the {{SimpleNuclide|Carbon|13}} = δ{{SimpleNuclide|Carbon|13}}) is expressed as parts per thousand (‰) divergence from the ratio of a standard:{{Cite book |title=Biological oceanography |last1=Miller |first1=Charles B. |publisher=John Wiley & Sons, Ltd. |last2=Wheeler |first2=Patricia |year=2012 |isbn=9781444333022 |edition=2nd |location=Chichester, West Sussex |page=186 |oclc=794619582}}
: ‰
The usual standard is Peedee Belemnite, abbreviated "PDB", a fossil belemnite. Due to shortage of the original PDB sample, artificial "virtual PDB", or "VPDB", is generally used today.{{cite book
| last1 = Faure
| first1 = Gunter
| last2 = Mensing
| first2 = Teresa M.
| date = 2005
| title = Isotopes: Principles and Applications
| location = Hoboken, NJ
| publisher = Wiley
| edition = Third
| chapter = 27 Carbon
| isbn = 978-81-265-3837-9
}}
Stable carbon isotopes in carbon dioxide are utilized differentially by plants during photosynthesis.{{Citation needed|reason=need provide a reference source|date=March 2017}} Grasses in temperate climates (barley, rice, wheat, rye, and oats, plus sunflower, potato, tomatoes, peanuts, cotton, sugar beet, and most trees and their nuts or fruits, roses, and Kentucky bluegrass) follow a C3 photosynthetic pathway that will yield δ13C values averaging about −26.5‰.{{Citation needed|reason=need to provide a reference|date=March 2017}} Grasses in hot arid climates (maize in particular, but also millet, sorghum, sugar cane, and crabgrass) follow a C4 photosynthetic pathway that produces δ13C values averaging about −12.5‰.{{cite journal |last1=O'Leary |first1=Marion H. |title=Carbon Isotopes in Photosynthesis |journal=BioScience |date=May 1988 |volume=38 |issue=5 |pages=328–336 |doi=10.2307/1310735 |jstor=1310735 |s2cid=29110460 |url=https://www.ldeo.columbia.edu/~polissar/OrgGeochem/oleary-1988-carbon-isotopes.pdf |access-date=17 November 2022 |language=en}}
It follows that eating these different plants will affect the δ13C values in the consumer's body tissues. If an animal (or human) eats only C3 plants, their δ13C values will be from −18.5 to −22.0‰ in their bone collagen and −14.5‰ in the hydroxylapatite of their teeth and bones.{{cite journal |last=Tycot |first=R. H. |year=2004 |title=Stable isotopes and diet: you are what you eat |journal=Proceedings of the International School of Physics "Enrico Fermi" Course CLIV |editor1=M. Martini |editor2=M. Milazzo |editor3=M. Piacentini |url=http://luna.cas.usf.edu/~rtykot/PR39%20-%20Enrico%20Fermi%20isotopes.pdf}}
In contrast, C4 feeders will have bone collagen with a value of −7.5‰ and hydroxylapatite value of −0.5‰.
In actual case studies, millet and maize eaters can easily be distinguished from rice and wheat eaters. Studying how these dietary preferences are distributed geographically through time can illuminate migration paths of people and dispersal paths of different agricultural crops. However, human groups have often mixed C3 and C4 plants (northern Chinese historically subsisted on wheat and millet), or mixed plant and animal groups together (for example, southeastern Chinese subsisting on rice and fish).{{cite journal |first1= Hedges |last1=Richard |year=2006 |title=Where does our protein come from? |journal=British Journal of Nutrition |volume=95 |issue=6 |pages=1031–2 |doi=10.1079/bjn20061782 |pmid=16768822 |doi-access=free}}