Isotopes of roentgenium#Roentgenium-275

{{Short description|none}}

{{Infobox roentgenium isotopes}}

Roentgenium (111Rg) is a synthetic element, and thus a standard atomic weight cannot be given. Like all synthetic elements, it has no stable isotopes. The first isotope to be synthesized was 272Rg in 1994, which is also the only directly synthesized isotope; all others are decay products of heavier elements. There are seven known radioisotopes, having mass numbers of 272, 274, and 278–282. The longest-lived isotope is 282Rg with a half-life of about 2 minutes, although the unconfirmed 283Rg and 286Rg may have longer half-lives of about 5.1 minutes and 10.7 minutes respectively.

List of isotopes

{{Anchor|Roentgenium-273|Roentgenium-275|Roentgenium-276|Roentgenium-277|Roentgenium-284|Roentgenium-285}}

{{Isotopes table

|symbol=Rg

|refs=NUBASE2020

|notes=unc(), mass#, EC, SF, spin#

}}

|-id=Roentgenium-272

| 272Rg

| 111

| 161

| 272.15327(25)#

| {{val|3.8|1.4|0.8|u=ms}}
[{{val|4.2|(11)|u=ms}}]

| α

| 268Mt

| 5+#, 6+#

|-id=Roentgenium-274

| 274RgNot directly synthesized, occurs as a decay product of 278Nh

| 111

| 163

| 274.15525(23)#

| {{val|12|17|5|u=ms}}
[{{val|20|(11)|u=ms}}]

| α

| 270Mt

|

|-id=Roentgenium-278

| 278RgNot directly synthesized, occurs as a decay product of 282Nh

| 111

| 167

| 278.16159(42)#

| {{val|4.6|5.5|1.6|u=ms}}{{Cite journal |title=New isotope 286Mc produced in the 243Am+48Ca reaction |last1=Oganessian |first1=Yu. Ts. |last2=Utyonkov |first2=V. K. |last3=Kovrizhnykh |first3=N. D. |display-authors=et al. |date=2022 |journal=Physical Review C |volume=106 |number=64306 |page=064306 |doi=10.1103/PhysRevC.106.064306|bibcode=2022PhRvC.106f4306O |s2cid=254435744 |doi-access=free |url=https://www.osti.gov/biblio/1905386 }}

| α

| 274Mt

|

|-id=Roentgenium-279

| rowspan=2|279RgNot directly synthesized, occurs in decay chain of 287Mc

| rowspan=2|111

| rowspan=2|168

| rowspan=2|279.16288(45)#

| rowspan=2|{{val|90|60|25|u=ms}}

| α (87%)

| 275Mt

|

|-

| SF (13%)

| (various)

|-id=Roentgenium-280

| rowspan=2|280RgNot directly synthesized, occurs in decay chain of 288Mc

| rowspan=2|111

| rowspan=2|169

| rowspan=2|280.16520(57)#

| rowspan=2|{{val|3.9|(3)|u=s}}

| α (87%)

| 276Mt

|

|-

| EC (13%){{Cite journal |arxiv = 1502.03030|doi = 10.1016/j.nuclphysa.2016.04.025|title = Recoil-α-fission and recoil-α–α-fission events observed in the reaction 48Ca + 243Am|journal = Nuclear Physics A|volume = 953|pages = 117–138|year = 2016|last1 = Forsberg|first1 = U.|last2 = Rudolph|first2 = D.|last3 = Andersson|first3 = L.-L.|last4 = Di Nitto|first4 = A.|last5 = Düllmann|first5 = Ch.E.|last6 = Fahlander|first6 = C.|last7 = Gates|first7 = J.M.|last8 = Golubev|first8 = P.|last9 = Gregorich|first9 = K.E.|last10 = Gross|first10 = C.J.|last11 = Herzberg|first11 = R.-D.|last12 = Heßberger|first12 = F.P.|last13 = Khuyagbaatar|first13 = J.|last14 = Kratz|first14 = J.V.|last15 = Rykaczewski|first15 = K.|last16 = Sarmiento|first16 = L.G.|last17 = Schädel|first17 = M.|last18 = Yakushev|first18 = A.|last19 = Åberg|first19 = S.|last20 = Ackermann|first20 = D.|last21 = Block|first21 = M.|last22 = Brand|first22 = H.|last23 = Carlsson|first23 = B.G.|last24 = Cox|first24 = D.|last25 = Derkx|first25 = X.|last26 = Dobaczewski|first26 = J.|last27 = Eberhardt|first27 = K.|last28 = Even|first28 = J.|last29 = Gerl|first29 = J.|last30 = Jäger|first30 = E.|display-authors = 29|bibcode = 2016NuPhA.953..117F|s2cid = 55598355}}

| 280Ds

|

|-id=Roentgenium-281

|rowspan=2 |281RgNot directly synthesized, occurs in decay chain of 293Ts

|rowspan=2 |111

|rowspan=2 |170

|rowspan=2 |281.16676(83)#

|rowspan=2 |{{val|11|3|1|u=s}}

| SF (86%)

| (various)

|rowspan=2|

|-

| α (14%)

| 277Mt

|-id=Roentgenium-282

| 282RgNot directly synthesized, occurs in decay chain of 294Ts

| 111

| 171

| 282.16934(63)#

| {{val|100|70|30|u=s}}
[{{val|130|(50)|u=s}}]

| α

| 278Mt

|

|-id=Roentgenium-283

| 283RgNot directly synthesized, occurs in decay chain of 287Fl; unconfirmed

| 111

| 172

| 283.17110(73)#

| 5.1 min?

| SF

| (various)

|

|-id=Roentgenium-286

| 286RgNot directly synthesised, occurs in decay chain of 290Fl and 294Lv; unconfirmed

| 111

| 175

| 286.17876(49)#

| 10.7 min?

| α

| 282Mt

|

{{Isotopes table/footer}}

Isotopes and nuclear properties

=Nucleosynthesis=

Super-heavy elements such as roentgenium are produced by bombarding lighter elements in particle accelerators that induce fusion reactions. Whereas the lightest isotope of roentgenium, roentgenium-272, can be synthesized directly this way, all the heavier roentgenium isotopes have only been observed as decay products of elements with higher atomic numbers.{{Cite journal |first1=Peter |last1=Armbruster |name-list-style=amp |first2=Gottfried |last2=Munzenberg |title=Creating superheavy elements |journal=Scientific American |volume=34 |pages=36–42 |year=1989}}

Depending on the energies involved, fusion reactions can be categorized as "hot" or "cold". In hot fusion reactions, very light, high-energy projectiles are accelerated toward very heavy targets (actinides), giving rise to compound nuclei at high excitation energy (~40–50 MeV) that may either fission or evaporate several (3 to 5) neutrons.{{cite journal |last1=Barber |first1=Robert C. |last2=Gäggeler |first2=Heinz W. |last3=Karol |first3=Paul J. |last4=Nakahara |first4=Hiromichi |last5=Vardaci |first5=Emanuele |last6=Vogt |first6=Erich |title=Discovery of the element with atomic number 112 (IUPAC Technical Report) |journal=Pure and Applied Chemistry |volume=81 |issue=7 |page=1331 |year=2009 |doi=10.1351/PAC-REP-08-03-05|doi-access=free |url=https://www.dora.lib4ri.ch/psi/islandora/object/psi%3A16806/datastream/PDF/Barber-2009-Discovery_of_the_element_with-%28published_version%29.pdf }} In cold fusion reactions, the produced fused nuclei have a relatively low excitation energy (~10–20 MeV), which decreases the probability that these products will undergo fission reactions. As the fused nuclei cool to the ground state, they require emission of only one or two neutrons, and thus, allows for the generation of more neutron-rich products. The latter is a distinct concept from that of where nuclear fusion claimed to be achieved at room temperature conditions (see cold fusion).{{cite journal |last1=Fleischmann |first1=Martin |last2=Pons |first2=Stanley |year=1989 |title=Electrochemically induced nuclear fusion of deuterium |journal=Journal of Electroanalytical Chemistry and Interfacial Electrochemistry |volume=261 |issue=2 |pages=301–308 |doi=10.1016/0022-0728(89)80006-3 }}

The table below contains various combinations of targets and projectiles which could be used to form compound nuclei with Z=111.

class="wikitable" style="text-align:center"

! Target !! Projectile !! CN !! Attempt result

205Tl

|70Zn||275Rg||{{No|Failure to date}}

208Pb

|65Cu||273Rg||{{Yes|Successful reaction}}

209Bi

|64Ni||273Rg||{{Yes|Successful reaction}}

231Pa

|48Ca||279Rg||{{unk|Reaction yet to be attempted}}

238U

|41K||279Rg||{{unk|Reaction yet to be attempted}}

244Pu

|37Cl||281Rg||{{unk|Reaction yet to be attempted}}

248Cm

|31P||279Rg||{{unk|Reaction yet to be attempted}}

250Cm

|31P||281Rg||{{unk|Reaction yet to be attempted}}

==Cold fusion==

Before the first successful synthesis of roentgenium in 1994 by the GSI team, a team at the Joint Institute for Nuclear Research in Dubna, Russia, also tried to synthesize roentgenium by bombarding bismuth-209 with nickel-64 in 1986. No roentgenium atoms were identified. After an upgrade of their facilities, the team at GSI successfully detected 3 atoms of 272Rg in their discovery experiment.{{Cite journal |doi=10.1007/BF01291182 |title=The new element 111 |year=1995 |last1=Hofmann |first1=S. |journal=Zeitschrift für Physik A |volume=350 |pages=281–282 |last2=Ninov |first2=V. |last3=Heßberger |first3=F. P. |last4=Armbruster |first4=P. |last5=Folger |first5=H. |last6=Münzenberg |first6=G. |last7=Schött |first7=H. J. |last8=Popeko |first8=A. G. |last9=Yeremin |first9=A. V. |last10=Andreyev |first10=A. N. |last11=Saro |first11=S. |last12=Janik |first12=R. |last13=Leino |first13=M. |bibcode = 1995ZPhyA.350..281H |issue=4 |s2cid=18804192 |display-authors=8}} A further 3 atoms were synthesized in 2002.{{Cite journal |doi=10.1140/epja/i2001-10119-x |title=New results on elements 111 and 112 |year=2002 |last1=Hofmann |first1=S. |journal=The European Physical Journal A |volume=14 |pages=147–157 |last2=Heßberger |first2=F. P. |last3=Ackermann |first3=D. |last4=Münzenberg |first4=G. |last5=Antalic |first5=S. |last6=Cagarda |first6=P. |last7=Kindler |first7=B. |last8=Kojouharova |first8=J. |last9=Leino |first9=M. |last10=Lommel |first10=B. |last11=Mann |first11=R. |last12=Popeko |first12=A.G. |last13=Reshitko |first13=S. |last14=Śaro |first14=S. |last15=Uusitalo |first15=J. |last16=Yeremin |first16=A.V. |issue=2 |display-authors=8|bibcode=2002EPJA...14..147H |s2cid=8773326 }} The discovery of roentgenium was confirmed in 2003 when a team at RIKEN measured the decays of 14 atoms of 272Rg.{{cite journal |last1=Morita |first1=K. |last2=Morimoto |first2=K. K. |last3=Kaji |first3=D. |last4=Goto |first4=S. |last5=Haba |first5=H. |last6=Ideguchi |first6=E. |last7=Kanungo |first7=R. |last8=Katori |first8=K. |last9=Koura |first9=H. |last10=Kudo |first10=H. |last11=Ohnishi |first11=T. |last12=Ozawa |first12=A. |last13=Peter |first13=J. C. |last14=Suda |first14=T. |last15=Sueki |first15=K. |last16=Tanihata |first16=I. |last17=Tokanai |first17=F. |last18=Xu |first18=H. |last19=Yeremin |first19=A. V. |last20=Yoneda |first20=A. |last21=Yoshida |first21=A. |last22=Zhao |first22=Y.-L. |last23=Zheng |first23=T. |title=Status of heavy element research using GARIS at RIKEN |year=2004 |journal=Nuclear Physics A |volume=734 |pages=101–108 |doi=10.1016/j.nuclphysa.2004.01.019|bibcode=2004NuPhA.734..101M }}

The same roentgenium isotope was also observed by an American team at the Lawrence Berkeley National Laboratory (LBNL) from the reaction:

:{{nuclide|lead|208}} + {{nuclide|copper|65}} → {{nuclide|roentgenium|272}} + {{SubatomicParticle|neutron}}

This reaction was conducted as part of their study of projectiles with odd atomic number in cold fusion reactions.{{Cite journal |doi=10.1103/PhysRevLett.93.212702 |title=Development of an Odd-Z-Projectile Reaction for Heavy Element Synthesis: 208Pb(64Ni,n)271Ds and 208Pb(65Cu,n)272111 |year=2004 |author=Folden, C. M. |journal=Physical Review Letters |volume=93 |pages=212702 |pmid=15601003 |issue=21 |bibcode=2004PhRvL..93u2702F |last2=Gregorich |first2=K. |last3=Düllmann|first3=Ch.|last4=Mahmud|first4=H.|last5=Pang|first5=G.|last6=Schwantes|first6=J.|last7=Sudowe|first7=R.|last8=Zielinski|first8=P.|last9=Nitsche|first9=H.|last10=Hoffman|first10=D.|url=https://digital.library.unt.edu/ark:/67531/metadc780605/m2/1/high_res_d/836679.pdf|display-authors=8}}

The 205Tl(70Zn,n)274Rg reaction was tried by the RIKEN team in 2004 and repeated in 2010 in an attempt to secure the discovery of its parent 278Nh:{{cite web |url=http://www.physics.adelaide.edu.au/cssm/workshops/inpc2016/talks/Morimoto_Mon_HallL_0930.pdf |title=The discovery of element 113 at RIKEN |last=Morimoto |first=Kouji |date=2016 |website=www.physics.adelaide.edu.au |publisher=26th International Nuclear Physics Conference |access-date=14 May 2017}}

:{{nuclide|thallium|205}} + {{nuclide|zinc|70}} → {{nuclide|roentgenium|274}} + {{SubatomicParticle|neutron}}

Due to the weakness of the thallium target, they were unable to detect any atoms of 274Rg.

==As decay product==

class="wikitable" style="text-align:center"

|+List of roentgenium isotopes observed by decay

! Evaporation residue !! Observed roentgenium isotope

294Lv, 290Fl, 290Nh ?286Rg ?
287Fl, 287Nh ?283Rg ?
294Ts, 290Mc, 286Nh282Rg{{cite journal|last1=Oganessian |first1=Yuri Ts.|last2=Abdullin |first2=F. Sh.|last3=Bailey |first3=P. D.|last4=Benker |first4=D. E.|last5=Bennett |first5=M. E.|last6=Dmitriev |first6=S. N.|last7=Ezold |first7= J. G.|last8=Hamilton |first8= J. H.|last9=Henderson |first9= R. A. |title=Synthesis of a New Element with Atomic Number Z=117 |date=2010-04-09 |journal=Physical Review Letters |volume=104 |number=142502 |doi=10.1103/PhysRevLett.104.142502 |pmid=20481935 |bibcode=2010PhRvL.104n2502O |url=https://www.researchgate.net/publication/44610795 |display-authors=3 |pages=142502|doi-access=free }}
293Ts, 289Mc, 285Nh281Rg
288Mc, 284Nh280Rg{{cite book|doi=10.1063/1.2746600|chapter=Heaviest Nuclei Produced in 48Ca-induced Reactions (Synthesis and Decay Properties)|title=AIP Conference Proceedings|year=2007|last1=Oganessian|first1=Yu. Ts.|last2=Penionzhkevich|first2=Yu. E.|last3=Cherepanov|first3=E. A.|volume=912|pages=235–246}}
287Mc, 283Nh279Rg
286Mc, 282Nh278Rg
278Nh274Rg{{cite journal|title=Experiment on the Synthesis of Element 113 in the Reaction 209Bi(70Zn,n)278113|year=2004|journal=Journal of the Physical Society of Japan|volume=73|issue=10|pages=2593–2596|doi=10.1143/JPSJ.73.2593|bibcode=2004JPSJ...73.2593M|last1=Morita|first1=Kosuke|last2=Morimoto|first2=Kouji|last3=Kaji|first3=Daiya|last4=Akiyama|first4=Takahiro|last5=Goto|first5=Sin-ichi|last6=Haba|first6=Hiromitsu|first7=Eiji |last7=Ideguchi|first8=Rituparna |last8=Kanungo|first9=Kenji |last9=Katori|first10=Hiroyuki |last10=Koura|first11=Hisaaki |last11=Kudo|first12=Tetsuya |last12=Ohnishi|first13=Akira |last13=Ozawa|first14=Toshimi |last14=Suda|first15=Keisuke |last15=Sueki|first16=HuShan |last16=Xu|first17=Takayuki |last17=Yamaguchi|first18=Akira |last18=Yoneda|first19=Atsushi |last19=Yoshida|first20=YuLiang |last20=Zhao|doi-access=}}

All the isotopes of roentgenium except roentgenium-272 have been detected only in the decay chains of elements with a higher atomic number, such as nihonium. Nihonium currently has six known isotopes, with two more unconfirmed; all of them undergo alpha decays to become roentgenium nuclei, with mass numbers between 274 and 286. Parent nihonium nuclei can be themselves decay products of moscovium and tennessine, and (via unconfirmed branches) flerovium and livermorium.{{cite web |url=http://www.nndc.bnl.gov/chart/reCenter.jsp?z=111&n=170 |title=Interactive Chart of Nuclides |publisher=Brookhaven National Laboratory |last=Sonzogni |first=Alejandro |location=National Nuclear Data Center |access-date=2008-06-06 |archive-date=2012-12-11 |archive-url=https://archive.today/20121211232515/http://www.nndc.bnl.gov/chart/reCenter.jsp?z=111&n=170 |url-status=dead }} For example, in January 2010, the Dubna team (JINR) identified roentgenium-281 as a final product in the decay of tennessine via an alpha decay sequence:

:{{nuclide|tennessine|293}} → {{nuclide|moscovium|289}} + {{nuclide|helium|4}}

:{{nuclide|moscovium|289}} → {{nuclide|nihonium|285}} + {{nuclide|helium|4}}

:{{nuclide|nihonium|285}} → {{nuclide|roentgenium|281}} + {{nuclide|helium|4}}

=Nuclear isomerism=

;274Rg

Two atoms of 274Rg have been observed in the decay chain of 278Nh. They decay by alpha emission, emitting alpha particles with different energies, and have different lifetimes. In addition, the two entire decay chains appear to be different. This suggests the presence of two nuclear isomers but further research is required.{{Failed verification|date=September 2024}}

;272Rg

Four alpha particles emitted from 272Rg with energies of 11.37, 11.03, 10.82, and 10.40 MeV have been detected. The GSI measured 272Rg to have a half-life of 1.6 ms while recent data from RIKEN have given a half-life of 3.8 ms. The conflicting data may be due to nuclear isomers but the current data are insufficient to come to any firm assignments.

=Chemical yields of isotopes=

==Cold fusion==

The table below provides cross-sections and excitation energies for cold fusion reactions producing roentgenium isotopes directly. Data in bold represent maxima derived from excitation function measurements. + represents an observed exit channel.

class="wikitable" style="text-align:center"
ProjectileTargetCN1n2n3n
64Ni209Bi273Rg3.5 pb, 12.5 MeV
65Cu208Pb273Rg1.7 pb, 13.2 MeV

=Theoretical calculations=

==Evaporation residue cross sections==

The below table contains various targets-projectile combinations for which calculations have provided estimates for cross section yields from various neutron evaporation channels. The channel with the highest expected yield is given.

DNS = Di-nuclear system; σ = cross section

class="wikitable" style="text-align:center"
TargetProjectileCNChannel (product)σmaxModelRef
238U

|41K||279Rg||4n (275Rg)||0.21 pb||DNS||{{cite journal|last1=Feng|first1=Z.|last2=Jin|first2=G.|last3=Li|first3=J.|title=Production of new superheavy Z=108–114 nuclei with 238U, 244Pu and 248,250Cm targets|date=2009|arxiv=0912.4069|journal=Physical Review C|volume=80|issue=5|pages=057601|doi=10.1103/PhysRevC.80.057601|s2cid=118733755 }}

244Pu

|37Cl||281Rg||4n (277Rg)||0.33 pb||DNS||

248Cm

|31P||279Rg||4n (275Rg)||1.85 pb||DNS||

250Cm

|31P||281Rg||4n (277Rg)||0.41 pb||DNS||

References

{{reflist}}

  • Isotope masses from:
  • {{cite journal |author=M. Wang |author2=G. Audi |author3=A. H. Wapstra |author4=F. G. Kondev |author5=M. MacCormick |author6=X. Xu|year=2012 |title=The AME2012 atomic mass evaluation (II). Tables, graphs and references. |url=http://amdc.in2p3.fr/masstables/Ame2012/Ame2012b-v2.pdf |journal=Chinese Physics C |volume=36 |issue= 12 |pages=1603–2014 |doi=10.1088/1674-1137/36/12/003|bibcode = 2012ChPhC..36....3M |hdl=11858/00-001M-0000-0010-23E8-5 |s2cid=250839471 |display-authors=etal}}
  • {{NUBASE 2003}}
  • Half-life, spin, and isomer data selected from the following sources.
  • {{NUBASE 2003}}
  • {{NNDC}}
  • {{CRC85|chapter=11}}
  • {{cite journal|author=Yu. Ts. Oganessian |title=Heaviest nuclei from 48Ca-induced reactions |journal=Journal of Physics G |year=2007 |volume=34 |issue=4 |pages=R165–R242|bibcode = 2007JPhG...34R.165O |doi = 10.1088/0954-3899/34/4/R01 }}

{{Navbox element isotopes}}

Category:Roentgenium

Roentgenium