Isotopes of silicon#Silicon-33

{{Short description|none}}

{{Infobox silicon isotopes}}

Silicon (14Si) has 25 known isotopes, with mass numbers ranging from 22 to 46. 28Si (the most abundant isotope, at 92.23%), 29Si (4.67%), and 30Si (3.1%) are stable. The longest-lived radioisotope is 32Si, which is produced by cosmic ray spallation of argon. Its half-life has been determined to be approximately 150 years (with decay energy 0.21 MeV), and it decays by beta emission to 32P (which has a 14.27-day half-life) and then to 32S. After 32Si, 31Si has the second longest half-life at 157.3 minutes. All others have half-lives under 7 seconds.

File:Isotopes_of_Silicon.png

List of isotopes

{{Isotopes table

|symbol=Si

|refs=NUBASE2020, AME2020 II

|notes=m, unc(), mass#, hl#, spin(), spin#, daughter-st, n, p, IT

}}

|-id=Silicon-22

| rowspan=3|22Si

| rowspan=3 style="text-align:right" | 14

| rowspan=3 style="text-align:right" | 8

| rowspan=3|22.03611(54)#

| rowspan=3|28.7(11) ms

| β+, p (62%)

| 21Mg

| rowspan=3|0+

| rowspan=3|

| rowspan=3|

|-

| β+ (37%)

| 22Al

|-

| β+, 2p (0.7%)

| 20Na

|-id=Silicon-23

| rowspan=3|23Si

| rowspan=3 style="text-align:right" | 14

| rowspan=3 style="text-align:right" | 9

| rowspan=3|23.02571(54)#

| rowspan=3|42.3(4) ms

| β+, p (88%)

| 22Mg

| rowspan=3|3/2+#

| rowspan=3|

| rowspan=3|

|-

| β+ (8%)

| 23Al

|-

| β+, 2p (3.6%)

| 21Na

|-id=Silicon-24

| rowspan=2|24Si

| rowspan=2 style="text-align:right" | 14

| rowspan=2 style="text-align:right" | 10

| rowspan=2|24.011535(21)

| rowspan=2|143.2 (21) ms

| β+ (65.5%)

| 24Al

| rowspan=2|0+

| rowspan=2|

| rowspan=2|

|-

| β+, p (34.5%)

| 23Mg

|-id=Silicon-25

| rowspan=2|25Si

| rowspan=2 style="text-align:right" | 14

| rowspan=2 style="text-align:right" | 11

| rowspan=2|25.004109(11)

| rowspan=2|220.6(10) ms

| β+ (65%)

| 25Al

| rowspan=2|5/2+

| rowspan=2|

| rowspan=2|

|-

| β+, p (35%)

| 24Mg

|-id=Silicon-26

| 26Si

| style="text-align:right" | 14

| style="text-align:right" | 12

| 25.99233382(12)

| 2.2453(7) s

| β+

| 26Al

| 0+

|

|

|-id=Silicon-27

| 27Si

| style="text-align:right" | 14

| style="text-align:right" | 13

| 26.98670469(12)

| 4.117(14) s

| β+

| 27Al

| 5/2+

|

|

|-

| 28Si

| style="text-align:right" | 14

| style="text-align:right" | 14

| 27.97692653442(55)

| colspan=3 align=center|Stable

| 0+

| 0.92223(19)

| 0.92205–0.92241

|-

| 29Si

| style="text-align:right" | 14

| style="text-align:right" | 15

| 28.97649466434(60)

| colspan=3 align=center|Stable

| 1/2+

| 0.04685(8)

| 0.04678–0.04692

|-id=Silicon-30

| 30Si

| style="text-align:right" | 14

| style="text-align:right" | 16

| 29.973770137(23)

| colspan=3 align=center|Stable

| 0+

| 0.03092(11)

| 0.03082–0.03102

|-id=Silicon-31

| 31Si

| style="text-align:right" | 14

| style="text-align:right" | 17

| 30.975363196(46)

| 157.16(20) min

| β

| 31P

| 3/2+

|

|

|-id=Silicon-32

| 32Si

| style="text-align:right" | 14

| style="text-align:right" | 18

| 31.97415154(32)

| 157(7) y

| β

| 32P

| 0+

| trace

| cosmogenic

|-id=Silicon-33

| 33Si

| style="text-align:right" | 14

| style="text-align:right" | 19

| 32.97797696(75)

| 6.18(18) s

| β

| 33P

| 3/2+

|

|

|-

| 34Si

| style="text-align:right" | 14

| style="text-align:right" | 20

| 33.97853805(86)

| 2.77(20) s

| β

| 34P

| 0+

|

|

|-id=Silicon-34m

| style="text-indent:1em" |34mSi

| colspan=3 style="text-indent:2em" | 4256.1(4) keV

| <210 ns

| IT

| 34Si

| (3−)

|

|

|-id=Silicon-35

| rowspan=2|35Si

| rowspan=2 style="text-align:right" | 14

| rowspan=2 style="text-align:right" | 21

| rowspan=2|34.984550(38)

| rowspan=2|780(120) ms

| β

| 35P

| rowspan=2|7/2−#

| rowspan=2|

| rowspan=2|

|-

| β, n?

| 34P

|-id=Silicon-36

| rowspan=2|36Si

| rowspan=2 style="text-align:right" | 14

| rowspan=2 style="text-align:right" | 22

| rowspan=2|35.986649(77)

| rowspan=2|503(2) ms

| β (88%)

| 36P

| rowspan=2|0+

| rowspan=2|

| rowspan=2|

|-

| β, n (12%)

| 35P

|-id=Silicon-37

| rowspan=3|37Si

| rowspan=3 style="text-align:right" | 14

| rowspan=3 style="text-align:right" | 23

| rowspan=3|36.99295(12)

| rowspan=3|141.0(35) ms

| β (83%)

| 37P

| rowspan=3|(5/2−)

| rowspan=3|

| rowspan=3|

|-

| β, n (17%)

| 36P

|-

| β, 2n?

| 35P

|-id=Silicon-38

| rowspan=2|38Si

| rowspan=2 style="text-align:right" | 14

| rowspan=2 style="text-align:right" | 24

| rowspan=2|37.99552(11)

| rowspan=2|63(8) ms

| β (75%)

| 38P

| rowspan=2|0+

| rowspan=2|

| rowspan=2|

|-

| β, n (25%)

| 37P

|-id=Silicon-39

| rowspan=3|39Si

| rowspan=3 style="text-align:right" | 14

| rowspan=3 style="text-align:right" | 25

| rowspan=3|39.00249(15)

| rowspan=3|41.2(41) ms

| β (67%)

| 39P

| rowspan=3|(5/2−)

| rowspan=3|

| rowspan=3|

|-

| β, n (33%)

| 38P

|-

| β, 2n?

| 37P

|-id=Silicon-40

| rowspan=3|40Si

| rowspan=3 style="text-align:right" | 14

| rowspan=3 style="text-align:right" | 26

| rowspan=3|40.00608(13)

| rowspan=3|31.2(26) ms

| β (62%)

| 40P

| rowspan=3|0+

| rowspan=3|

| rowspan=3|

|-

| β, n (38%)

| 39P

|-

| β, 2n?

| 38P

|-id=Silicon-41

| rowspan=3|41Si

| rowspan=3 style="text-align:right" | 14

| rowspan=3 style="text-align:right" | 27

| rowspan=3|41.01417(32)#

| rowspan=3|20.0(25) ms

| β, n (>55%)

| 40P

| rowspan=3|7/2−#

| rowspan=3|

| rowspan=3|

|-

| β (<45%)

| 41P

|-

| β, 2n?

| 39P

|-id=Silicon-42

| rowspan=3|42Si

| rowspan=3 style="text-align:right" | 14

| rowspan=3 style="text-align:right" | 28

| rowspan=3|42.01808(32)#

| rowspan=3|15.5(4 (stat), 16 (sys)) ms{{cite journal |last1=Crawford |first1=H. L. |last2=Tripathi |first2=V. |last3=Allmond |first3=J. M. |display-authors=et al. |title=Crossing N {{=}} 28 toward the neutron drip line: first measurement of half-lives at FRIB |date=2022 |journal=Physical Review Letters |volume=129 |number=212501 |page=212501 |doi=10.1103/PhysRevLett.129.212501|pmid=36461950 |bibcode=2022PhRvL.129u2501C |s2cid=253600995 |doi-access=free }}

| β (51%)

| 42P

| rowspan=3|0+

| rowspan=3|

| rowspan=3|

|-

| β, n (48%)

| 41P

|-

| β, 2n (1%)

| 40P

|-id=Silicon-43

| rowspan=3|43Si

| rowspan=3 style="text-align:right" | 14

| rowspan=3 style="text-align:right" | 29

| rowspan=3|43.02612(43)#

| rowspan=3|13(4 (stat), 2 (sys)) ms

| β, n (52%)

| 42P

| rowspan=3|3/2−#

| rowspan=3|

| rowspan=3|

|-

| β (27%)

| 43P

|-

| β, 2n (21%)

| 41P

|-id=Silicon-44

| rowspan=3|44Si

| rowspan=3 style="text-align:right" | 14

| rowspan=3 style="text-align:right" | 30

| rowspan=3|44.03147(54)#

| rowspan=3|4# ms [>360 ns]

| β?

| 44P

| rowspan=3|0+

| rowspan=3|

| rowspan=3|

|-

| β, n?

| 43P

|-

| β, 2n?

| 42P

|-id=Silicon-45

| 45Si{{cite journal | last=Yoshimoto | first=Masahiro | last2=Suzuki | first2=Hiroshi | last3=Fukuda | first3=Naoki | last4=Takeda | first4=Hiroyuki | last5=Shimizu | first5=Yohei | last6=Yanagisawa | first6=Yoshiyuki | last7=Sato | first7=Hiromi | last8=Kusaka | first8=Kensuke | last9=Ohtake | first9=Masao | last10=Yoshida | first10=Koichi | last11=Michimasa | first11=Shin’ichiro | title=Discovery of Neutron-Rich Silicon Isotopes 45,46Si | journal=Progress of Theoretical and Experimental Physics | publisher=Oxford University Press (OUP) | volume=2024 | issue=10 | year=2024 | issn=2050-3911 | doi=10.1093/ptep/ptae155 | doi-access=free}}

| style="text-align:right" | 14

| style="text-align:right" | 31

| 45.03982(64)#

| 4# ms

|

|

| 3/2−#

|

|

|-id=Silicon-46

| 46Si

| style="text-align:right" | 14

| style="text-align:right" | 32

|

|

|

|

|

|

|

{{Isotopes table/footer}}

Silicon-28

Silicon-28, the most abundant isotope of silicon, is of particular interest in the construction of quantum computers when highly enriched, as the presence of 29Si in a sample of silicon contributes to quantum decoherence.{{Cite journal |date=2014-08-11 |title=Beyond Six Nines: Ultra-enriched Silicon Paves the Road to Quantum Computing |url=https://www.nist.gov/news-events/news/2014/08/beyond-six-nines-ultra-enriched-silicon-paves-road-quantum-computing |journal=NIST |language=en}} Extremely pure (>99.9998%) samples of 28Si can be produced through selective ionization and deposition of 28Si from silane gas.{{Cite journal |last1=Dwyer |first1=K J |last2=Pomeroy |first2=J M |last3=Simons |first3=D S |last4=Steffens |first4=K L |last5=Lau |first5=J W |date=2014-08-30 |title=Enriching 28 Si beyond 99.9998 % for semiconductor quantum computing |url=https://iopscience.iop.org/article/10.1088/0022-3727/47/34/345105 |journal=Journal of Physics D: Applied Physics |volume=47 |issue=34 |pages=345105 |doi=10.1088/0022-3727/47/34/345105 |issn=0022-3727}} Due to the extremely high purity that can be obtained in this manner, the Avogadro project sought to develop a new definition of the kilogram by making a {{convert|93.75|mm|in|adj=on|abbr=on}} sphere of the isotope and determining the exact number of atoms in the sample.Powell, Devin (1 July 2008). [https://www.newscientist.com/article/dn14229-roundest-objects-in-the-world-created.html#.VOHyzfnRV_E "Roundest Objects in the World Created"]. New Scientist. Retrieved 16 June 2015.{{cite magazine |last1=Keats |first1=Jonathon |title=The Search for a More Perfect Kilogram |url=https://www.wired.com/2011/09/ff-kilogram/ |magazine=Wired |volume=19 |issue=10 |access-date=16 December 2023}}

Silicon-28 is produced in stars during the alpha process and the oxygen-burning process, and drives the silicon-burning process in massive stars shortly before they go supernova.{{cite journal | last1=Woosley | first1=S. | last2=Janka | first2=T. | title=The physics of core collapse supernovae | year=2006 | arxiv=astro-ph/0601261 | doi=10.1038/nphys172 | volume=1 | issue=3 | journal=Nature Physics | pages=147–154|bibcode = 2005NatPh...1..147W | citeseerx=10.1.1.336.2176 | s2cid=118974639 }}{{cite book |last=Narlikar |first=Jayant V. |title=From Black Clouds to Black Holes |year=1995 |publisher=World Scientific |isbn=978-9810220334 |url=https://books.google.com/books?id=0_gmjz-L70EC&pg=PA94 |page=94}}

Silicon-29

Silicon-29 is of note as the only stable silicon isotope with a nonzero nuclear spin (I = 1/2).{{Cite book |last1=Greenwood |first1=Norman N. |title=Chemistry of the Elements |last2=Earnshaw |first2=Alan |publisher=Butterworth-Heinemann |year=1997 |isbn=978-0-08-037941-8 |edition=2nd}} As such, it can be employed in nuclear magnetic resonance and hyperfine transition studies, for example to study the properties of the so-called A-center defect in pure silicon.{{Cite journal |last1=Watkins |first1=G. D. |last2=Corbett |first2=J. W. |date=1961-02-15 |title=Defects in Irradiated Silicon. I. Electron Spin Resonance of the Si- A Center |url=https://link.aps.org/doi/10.1103/PhysRev.121.1001 |journal=Physical Review |language=en |volume=121 |issue=4 |pages=1001–1014 |doi=10.1103/PhysRev.121.1001 |bibcode=1961PhRv..121.1001W |issn=0031-899X}}

Silicon-34

Silicon-34 is a radioactive isotope with a half-life of 2.8 seconds. In addition to the usual N = 20 closed shell, the nucleus also shows a strong Z = 14 shell closure, making it behave like a doubly magic spherical nucleus, except that it is also located two protons above an island of inversion.{{cite journal |last1=Lică |first1=R. |last2=Rotaru |first2=F. |last3=Borge |first3=M. J. G. |last4=Grévy |first4=S. |last5=Negoiţă |first5=F. |last6=Poves |first6=A. |last7=Sorlin |first7=O. |last8=Andreyev |first8=A. N. |last9=Borcea |first9=R. |last10=Costache |first10=C. |last11=De Witte |first11=H. |last12=Fraile |first12=L. M. |last13=Greenlees |first13=P. T. |last14=Huyse |first14=M. |last15=Ionescu |first15=A. |last16=Kisyov |first16=S. |last17=Konki |first17=J. |last18=Lazarus |first18=I. |last19=Madurga |first19=M. |last20=Mărginean |first20=N. |last21=Mărginean |first21=R. |last22=Mihai |first22=C. |last23=Mihai |first23=R. E. |last24=Negret |first24=A. |last25=Nowacki |first25=F. |last26=Page |first26=R. D. |last27=Pakarinen |first27=J. |last28=Pucknell |first28=V. |last29=Rahkila |first29=P. |last30=Rapisarda |first30=E. |last31=Şerban |first31=A. |last32=Sotty |first32=C. O. |last33=Stan |first33=L. |last34=Stănoiu |first34=M. |last35=Tengblad |first35=O. |last36=Turturică |first36=A. |last37=Van Duppen |first37=P. |last38=Warr |first38=N. |last39=Dessagne |first39=Ph. |last40=Stora |first40=T. |last41=Borcea |first41=C. |last42=Călinescu |first42=S. |last43=Daugas |first43=J. M. |last44=Filipescu |first44=D. |last45=Kuti |first45=I. |last46=Franchoo |first46=S. |last47=Gheorghe |first47=I. |last48=Morfouace |first48=P. |last49=Morel |first49=P. |last50=Mrazek |first50=J. |last51=Pietreanu |first51=D. |last52=Sohler |first52=D. |last53=Stefan |first53=I. |last54=Şuvăilă |first54=R. |last55=Toma |first55=S. |last56=Ur |first56=C. A. |title=Normal and intruder configurations in Si 34 populated in the β − decay of Mg 34 and Al 34 |journal=Physical Review C |date=11 September 2019 |volume=100 |issue=3 |page=034306 |doi=10.1103/PhysRevC.100.034306|doi-access=free |arxiv=1908.11626 }} Silicon-34 has an unusual "bubble" structure where the proton distribution is less dense at the center than near the surface, as the 2s1/2 proton orbital is almost unoccupied in the ground state, unlike in 36S where it is almost full.{{cite news |title=Physicists find atomic nucleus with a 'bubble' in the middle |url=https://www.sciencenews.org/article/physicists-find-atomic-nucleus-bubble-middle |access-date=26 December 2023 |date=24 October 2016}}{{cite journal |last1=Mutschler |first1=A. |last2=Lemasson |first2=A. |last3=Sorlin |first3=O. |last4=Bazin |first4=D. |last5=Borcea |first5=C. |last6=Borcea |first6=R. |last7=Dombrádi |first7=Z. |last8=Ebran |first8=J.-P. |last9=Gade |first9=A. |last10=Iwasaki |first10=H. |last11=Khan |first11=E. |last12=Lepailleur |first12=A. |last13=Recchia |first13=F. |last14=Roger |first14=T. |last15=Rotaru |first15=F. |last16=Sohler |first16=D. |last17=Stanoiu |first17=M. |last18=Stroberg |first18=S. R. |last19=Tostevin |first19=J. A. |last20=Vandebrouck |first20=M. |last21=Weisshaar |first21=D. |last22=Wimmer |first22=K. |title=A proton density bubble in the doubly magic 34Si nucleus |journal=Nature Physics |date=February 2017 |volume=13 |issue=2 |pages=152–156 |doi=10.1038/nphys3916 |arxiv=1707.03583}} Silicon-34 is one of the known cluster decay emission particles; it is produced in the decay of 242Cm with a branching ratio of approximately {{val|1e-16}}.{{cite journal |last1=Bonetti |first1=R. |last2=Guglielmetti |first2=A. |year=2007 |title=Cluster radioactivity: an overview after twenty years |url=http://www.rrp.infim.ro/2007_59_2/10_bonetti.pdf |archive-url=https://web.archive.org/web/20160919014152/http://www.rrp.infim.ro/2007_59_2/10_bonetti.pdf |archive-date=19 September 2016 |journal=Romanian Reports in Physics |volume=59 |pages=301–310}}

References

{{Reflist}}