Isotopes of silicon#Silicon-33
{{Short description|none}}
{{Infobox silicon isotopes}}
Silicon (14Si) has 25 known isotopes, with mass numbers ranging from 22 to 46. 28Si (the most abundant isotope, at 92.23%), 29Si (4.67%), and 30Si (3.1%) are stable. The longest-lived radioisotope is 32Si, which is produced by cosmic ray spallation of argon. Its half-life has been determined to be approximately 150 years (with decay energy 0.21 MeV), and it decays by beta emission to 32P (which has a 14.27-day half-life) and then to 32S. After 32Si, 31Si has the second longest half-life at 157.3 minutes. All others have half-lives under 7 seconds.
List of isotopes
{{Isotopes table
|symbol=Si
|refs=NUBASE2020, AME2020 II
|notes=m, unc(), mass#, hl#, spin(), spin#, daughter-st, n, p, IT
}}
|-id=Silicon-22
| rowspan=3|22Si
| rowspan=3 style="text-align:right" | 14
| rowspan=3 style="text-align:right" | 8
| rowspan=3|22.03611(54)#
| rowspan=3|28.7(11) ms
| 21Mg
| rowspan=3|0+
| rowspan=3|
| rowspan=3|
|-
| β+ (37%)
| 22Al
|-
| β+, 2p (0.7%)
| 20Na
|-id=Silicon-23
| rowspan=3|23Si
| rowspan=3 style="text-align:right" | 14
| rowspan=3 style="text-align:right" | 9
| rowspan=3|23.02571(54)#
| rowspan=3|42.3(4) ms
| β+, p (88%)
| 22Mg
| rowspan=3|3/2+#
| rowspan=3|
| rowspan=3|
|-
| β+ (8%)
| 23Al
|-
| β+, 2p (3.6%)
| 21Na
|-id=Silicon-24
| rowspan=2|24Si
| rowspan=2 style="text-align:right" | 14
| rowspan=2 style="text-align:right" | 10
| rowspan=2|24.011535(21)
| rowspan=2|143.2 (21) ms
| β+ (65.5%)
| 24Al
| rowspan=2|0+
| rowspan=2|
| rowspan=2|
|-
| β+, p (34.5%)
| 23Mg
|-id=Silicon-25
| rowspan=2|25Si
| rowspan=2 style="text-align:right" | 14
| rowspan=2 style="text-align:right" | 11
| rowspan=2|25.004109(11)
| rowspan=2|220.6(10) ms
| β+ (65%)
| 25Al
| rowspan=2|5/2+
| rowspan=2|
| rowspan=2|
|-
| β+, p (35%)
| 24Mg
|-id=Silicon-26
| 26Si
| style="text-align:right" | 14
| style="text-align:right" | 12
| 25.99233382(12)
| 2.2453(7) s
| β+
| 26Al
| 0+
|
|
|-id=Silicon-27
| 27Si
| style="text-align:right" | 14
| style="text-align:right" | 13
| 26.98670469(12)
| 4.117(14) s
| β+
| 27Al
| 5/2+
|
|
|-
| 28Si
| style="text-align:right" | 14
| style="text-align:right" | 14
| 27.97692653442(55)
| colspan=3 align=center|Stable
| 0+
| 0.92223(19)
| 0.92205–0.92241
|-
| 29Si
| style="text-align:right" | 14
| style="text-align:right" | 15
| 28.97649466434(60)
| colspan=3 align=center|Stable
| 1/2+
| 0.04685(8)
| 0.04678–0.04692
|-id=Silicon-30
| 30Si
| style="text-align:right" | 14
| style="text-align:right" | 16
| 29.973770137(23)
| colspan=3 align=center|Stable
| 0+
| 0.03092(11)
| 0.03082–0.03102
|-id=Silicon-31
| 31Si
| style="text-align:right" | 14
| style="text-align:right" | 17
| 30.975363196(46)
| 157.16(20) min
| β−
| 31P
| 3/2+
|
|
|-id=Silicon-32
| 32Si
| style="text-align:right" | 14
| style="text-align:right" | 18
| 31.97415154(32)
| 157(7) y
| β−
| 32P
| 0+
| trace
|-id=Silicon-33
| 33Si
| style="text-align:right" | 14
| style="text-align:right" | 19
| 32.97797696(75)
| 6.18(18) s
| β−
| 33P
| 3/2+
|
|
|-
| 34Si
| style="text-align:right" | 14
| style="text-align:right" | 20
| 33.97853805(86)
| 2.77(20) s
| β−
| 34P
| 0+
|
|
|-id=Silicon-34m
| style="text-indent:1em" |34mSi
| colspan=3 style="text-indent:2em" | 4256.1(4) keV
| <210 ns
| IT
| 34Si
| (3−)
|
|
|-id=Silicon-35
| rowspan=2|35Si
| rowspan=2 style="text-align:right" | 14
| rowspan=2 style="text-align:right" | 21
| rowspan=2|34.984550(38)
| rowspan=2|780(120) ms
| β−
| 35P
| rowspan=2|7/2−#
| rowspan=2|
| rowspan=2|
|-
| β−, n?
| 34P
|-id=Silicon-36
| rowspan=2|36Si
| rowspan=2 style="text-align:right" | 14
| rowspan=2 style="text-align:right" | 22
| rowspan=2|35.986649(77)
| rowspan=2|503(2) ms
| β− (88%)
| 36P
| rowspan=2|0+
| rowspan=2|
| rowspan=2|
|-
| β−, n (12%)
| 35P
|-id=Silicon-37
| rowspan=3|37Si
| rowspan=3 style="text-align:right" | 14
| rowspan=3 style="text-align:right" | 23
| rowspan=3|36.99295(12)
| rowspan=3|141.0(35) ms
| β− (83%)
| 37P
| rowspan=3|(5/2−)
| rowspan=3|
| rowspan=3|
|-
| β−, n (17%)
| 36P
|-
| β−, 2n?
| 35P
|-id=Silicon-38
| rowspan=2|38Si
| rowspan=2 style="text-align:right" | 14
| rowspan=2 style="text-align:right" | 24
| rowspan=2|37.99552(11)
| rowspan=2|63(8) ms
| β− (75%)
| 38P
| rowspan=2|0+
| rowspan=2|
| rowspan=2|
|-
| β−, n (25%)
| 37P
|-id=Silicon-39
| rowspan=3|39Si
| rowspan=3 style="text-align:right" | 14
| rowspan=3 style="text-align:right" | 25
| rowspan=3|39.00249(15)
| rowspan=3|41.2(41) ms
| β− (67%)
| 39P
| rowspan=3|(5/2−)
| rowspan=3|
| rowspan=3|
|-
| β−, n (33%)
| 38P
|-
| β−, 2n?
| 37P
|-id=Silicon-40
| rowspan=3|40Si
| rowspan=3 style="text-align:right" | 14
| rowspan=3 style="text-align:right" | 26
| rowspan=3|40.00608(13)
| rowspan=3|31.2(26) ms
| β− (62%)
| 40P
| rowspan=3|0+
| rowspan=3|
| rowspan=3|
|-
| β−, n (38%)
| 39P
|-
| β−, 2n?
| 38P
|-id=Silicon-41
| rowspan=3|41Si
| rowspan=3 style="text-align:right" | 14
| rowspan=3 style="text-align:right" | 27
| rowspan=3|41.01417(32)#
| rowspan=3|20.0(25) ms
| β−, n (>55%)
| 40P
| rowspan=3|7/2−#
| rowspan=3|
| rowspan=3|
|-
| β− (<45%)
| 41P
|-
| β−, 2n?
| 39P
|-id=Silicon-42
| rowspan=3|42Si
| rowspan=3 style="text-align:right" | 14
| rowspan=3 style="text-align:right" | 28
| rowspan=3|42.01808(32)#
| rowspan=3|15.5(4 (stat), 16 (sys)) ms{{cite journal |last1=Crawford |first1=H. L. |last2=Tripathi |first2=V. |last3=Allmond |first3=J. M. |display-authors=et al. |title=Crossing N {{=}} 28 toward the neutron drip line: first measurement of half-lives at FRIB |date=2022 |journal=Physical Review Letters |volume=129 |number=212501 |page=212501 |doi=10.1103/PhysRevLett.129.212501|pmid=36461950 |bibcode=2022PhRvL.129u2501C |s2cid=253600995 |doi-access=free }}
| β− (51%)
| 42P
| rowspan=3|0+
| rowspan=3|
| rowspan=3|
|-
| β−, n (48%)
| 41P
|-
| β−, 2n (1%)
| 40P
|-id=Silicon-43
| rowspan=3|43Si
| rowspan=3 style="text-align:right" | 14
| rowspan=3 style="text-align:right" | 29
| rowspan=3|43.02612(43)#
| rowspan=3|13(4 (stat), 2 (sys)) ms
| β−, n (52%)
| 42P
| rowspan=3|3/2−#
| rowspan=3|
| rowspan=3|
|-
| β− (27%)
| 43P
|-
| β−, 2n (21%)
| 41P
|-id=Silicon-44
| rowspan=3|44Si
| rowspan=3 style="text-align:right" | 14
| rowspan=3 style="text-align:right" | 30
| rowspan=3|44.03147(54)#
| rowspan=3|4# ms [>360 ns]
| β−?
| 44P
| rowspan=3|0+
| rowspan=3|
| rowspan=3|
|-
| β−, n?
| 43P
|-
| β−, 2n?
| 42P
|-id=Silicon-45
| style="text-align:right" | 14
| style="text-align:right" | 31
| 45.03982(64)#
| 4# ms
|
|
| 3/2−#
|
|
|-id=Silicon-46
| style="text-align:right" | 14
| style="text-align:right" | 32
|
|
|
|
|
|
|
{{Isotopes table/footer}}
Silicon-28
Silicon-28, the most abundant isotope of silicon, is of particular interest in the construction of quantum computers when highly enriched, as the presence of 29Si in a sample of silicon contributes to quantum decoherence.{{Cite journal |date=2014-08-11 |title=Beyond Six Nines: Ultra-enriched Silicon Paves the Road to Quantum Computing |url=https://www.nist.gov/news-events/news/2014/08/beyond-six-nines-ultra-enriched-silicon-paves-road-quantum-computing |journal=NIST |language=en}} Extremely pure (>99.9998%) samples of 28Si can be produced through selective ionization and deposition of 28Si from silane gas.{{Cite journal |last1=Dwyer |first1=K J |last2=Pomeroy |first2=J M |last3=Simons |first3=D S |last4=Steffens |first4=K L |last5=Lau |first5=J W |date=2014-08-30 |title=Enriching 28 Si beyond 99.9998 % for semiconductor quantum computing |url=https://iopscience.iop.org/article/10.1088/0022-3727/47/34/345105 |journal=Journal of Physics D: Applied Physics |volume=47 |issue=34 |pages=345105 |doi=10.1088/0022-3727/47/34/345105 |issn=0022-3727}} Due to the extremely high purity that can be obtained in this manner, the Avogadro project sought to develop a new definition of the kilogram by making a {{convert|93.75|mm|in|adj=on|abbr=on}} sphere of the isotope and determining the exact number of atoms in the sample.Powell, Devin (1 July 2008). [https://www.newscientist.com/article/dn14229-roundest-objects-in-the-world-created.html#.VOHyzfnRV_E "Roundest Objects in the World Created"]. New Scientist. Retrieved 16 June 2015.{{cite magazine |last1=Keats |first1=Jonathon |title=The Search for a More Perfect Kilogram |url=https://www.wired.com/2011/09/ff-kilogram/ |magazine=Wired |volume=19 |issue=10 |access-date=16 December 2023}}
Silicon-28 is produced in stars during the alpha process and the oxygen-burning process, and drives the silicon-burning process in massive stars shortly before they go supernova.{{cite journal | last1=Woosley | first1=S. | last2=Janka | first2=T. | title=The physics of core collapse supernovae | year=2006 | arxiv=astro-ph/0601261 | doi=10.1038/nphys172 | volume=1 | issue=3 | journal=Nature Physics | pages=147–154|bibcode = 2005NatPh...1..147W | citeseerx=10.1.1.336.2176 | s2cid=118974639 }}{{cite book |last=Narlikar |first=Jayant V. |title=From Black Clouds to Black Holes |year=1995 |publisher=World Scientific |isbn=978-9810220334 |url=https://books.google.com/books?id=0_gmjz-L70EC&pg=PA94 |page=94}}
Silicon-29
Silicon-29 is of note as the only stable silicon isotope with a nonzero nuclear spin (I = 1/2).{{Cite book |last1=Greenwood |first1=Norman N. |title=Chemistry of the Elements |last2=Earnshaw |first2=Alan |publisher=Butterworth-Heinemann |year=1997 |isbn=978-0-08-037941-8 |edition=2nd}} As such, it can be employed in nuclear magnetic resonance and hyperfine transition studies, for example to study the properties of the so-called A-center defect in pure silicon.{{Cite journal |last1=Watkins |first1=G. D. |last2=Corbett |first2=J. W. |date=1961-02-15 |title=Defects in Irradiated Silicon. I. Electron Spin Resonance of the Si- A Center |url=https://link.aps.org/doi/10.1103/PhysRev.121.1001 |journal=Physical Review |language=en |volume=121 |issue=4 |pages=1001–1014 |doi=10.1103/PhysRev.121.1001 |bibcode=1961PhRv..121.1001W |issn=0031-899X}}
Silicon-34
Silicon-34 is a radioactive isotope with a half-life of 2.8 seconds. In addition to the usual N = 20 closed shell, the nucleus also shows a strong Z = 14 shell closure, making it behave like a doubly magic spherical nucleus, except that it is also located two protons above an island of inversion.{{cite journal |last1=Lică |first1=R. |last2=Rotaru |first2=F. |last3=Borge |first3=M. J. G. |last4=Grévy |first4=S. |last5=Negoiţă |first5=F. |last6=Poves |first6=A. |last7=Sorlin |first7=O. |last8=Andreyev |first8=A. N. |last9=Borcea |first9=R. |last10=Costache |first10=C. |last11=De Witte |first11=H. |last12=Fraile |first12=L. M. |last13=Greenlees |first13=P. T. |last14=Huyse |first14=M. |last15=Ionescu |first15=A. |last16=Kisyov |first16=S. |last17=Konki |first17=J. |last18=Lazarus |first18=I. |last19=Madurga |first19=M. |last20=Mărginean |first20=N. |last21=Mărginean |first21=R. |last22=Mihai |first22=C. |last23=Mihai |first23=R. E. |last24=Negret |first24=A. |last25=Nowacki |first25=F. |last26=Page |first26=R. D. |last27=Pakarinen |first27=J. |last28=Pucknell |first28=V. |last29=Rahkila |first29=P. |last30=Rapisarda |first30=E. |last31=Şerban |first31=A. |last32=Sotty |first32=C. O. |last33=Stan |first33=L. |last34=Stănoiu |first34=M. |last35=Tengblad |first35=O. |last36=Turturică |first36=A. |last37=Van Duppen |first37=P. |last38=Warr |first38=N. |last39=Dessagne |first39=Ph. |last40=Stora |first40=T. |last41=Borcea |first41=C. |last42=Călinescu |first42=S. |last43=Daugas |first43=J. M. |last44=Filipescu |first44=D. |last45=Kuti |first45=I. |last46=Franchoo |first46=S. |last47=Gheorghe |first47=I. |last48=Morfouace |first48=P. |last49=Morel |first49=P. |last50=Mrazek |first50=J. |last51=Pietreanu |first51=D. |last52=Sohler |first52=D. |last53=Stefan |first53=I. |last54=Şuvăilă |first54=R. |last55=Toma |first55=S. |last56=Ur |first56=C. A. |title=Normal and intruder configurations in Si 34 populated in the β − decay of Mg 34 and Al 34 |journal=Physical Review C |date=11 September 2019 |volume=100 |issue=3 |page=034306 |doi=10.1103/PhysRevC.100.034306|doi-access=free |arxiv=1908.11626 }} Silicon-34 has an unusual "bubble" structure where the proton distribution is less dense at the center than near the surface, as the 2s1/2 proton orbital is almost unoccupied in the ground state, unlike in 36S where it is almost full.{{cite news |title=Physicists find atomic nucleus with a 'bubble' in the middle |url=https://www.sciencenews.org/article/physicists-find-atomic-nucleus-bubble-middle |access-date=26 December 2023 |date=24 October 2016}}{{cite journal |last1=Mutschler |first1=A. |last2=Lemasson |first2=A. |last3=Sorlin |first3=O. |last4=Bazin |first4=D. |last5=Borcea |first5=C. |last6=Borcea |first6=R. |last7=Dombrádi |first7=Z. |last8=Ebran |first8=J.-P. |last9=Gade |first9=A. |last10=Iwasaki |first10=H. |last11=Khan |first11=E. |last12=Lepailleur |first12=A. |last13=Recchia |first13=F. |last14=Roger |first14=T. |last15=Rotaru |first15=F. |last16=Sohler |first16=D. |last17=Stanoiu |first17=M. |last18=Stroberg |first18=S. R. |last19=Tostevin |first19=J. A. |last20=Vandebrouck |first20=M. |last21=Weisshaar |first21=D. |last22=Wimmer |first22=K. |title=A proton density bubble in the doubly magic 34Si nucleus |journal=Nature Physics |date=February 2017 |volume=13 |issue=2 |pages=152–156 |doi=10.1038/nphys3916 |arxiv=1707.03583}} Silicon-34 is one of the known cluster decay emission particles; it is produced in the decay of 242Cm with a branching ratio of approximately {{val|1e-16}}.{{cite journal |last1=Bonetti |first1=R. |last2=Guglielmetti |first2=A. |year=2007 |title=Cluster radioactivity: an overview after twenty years |url=http://www.rrp.infim.ro/2007_59_2/10_bonetti.pdf |archive-url=https://web.archive.org/web/20160919014152/http://www.rrp.infim.ro/2007_59_2/10_bonetti.pdf |archive-date=19 September 2016 |journal=Romanian Reports in Physics |volume=59 |pages=301–310}}
References
{{Reflist}}
External links
- [https://web.archive.org/web/20070711094750/http://ie.lbl.gov/education/parent/Si_iso.htm Silicon isotopes data from The Berkeley Laboratory Isotopes Project's]
{{Navbox element isotopes}}