Isotopes of tin#Tin-122

{{Short description|none}}

{{Infobox tin isotopes}}

Tin (50Sn) is the element with the greatest number of stable isotopes (ten; three of them are potentially radioactive but have not been observed to decay). This is probably related to the fact that 50 is a "magic number" of protons. In addition, 32 unstable tin isotopes are known, including tin-100 (100Sn) (discovered in 1994){{cite journal |author=K. Sümmerer |author2=R. Schneider |author3=T Faestermann |author4=J. Friese |author5=H. Geissel |author6=R. Gernhäuser |author7=H. Gilg |author8=F. Heine |author9=J. Homolka |author10=P. Kienle |author11=H. J. Körner |author12=G. Münzenberg |author13=J. Reinhold |author14=K. Zeitelhack |title=Identification and decay spectroscopy of 100Sn at the GSI projectile fragment separator FRS |journal=Nuclear Physics A |date=April 1997 |volume=616 |issue=1–2 |pages=341–345 |doi=10.1016/S0375-9474(97)00106-1|bibcode=1997NuPhA.616..341S}} and tin-132 (132Sn), which are both "doubly magic". The longest-lived tin radioisotope is tin-126 (126Sn), with a half-life of 230,000 years. The other 28 radioisotopes have half-lives of less than a year.

List of isotopes

{{Anchor|Tin-100m}}

{{Isotopes table

| symbol = Sn

| refs = NUBASE2020, AME2020 II

| notes = m, unc(), mass#, exen#, hl#, spin(), spin#, daughter-st, n, p, EC, IT

}}

|-id=Tin-98

| 98Sn{{cite journal |first1=H. |last1=Suzuki |first2=N. |last2=Fukuda |first3=H. |last3=Takeda |display-authors=et al. |title=Discovery of 98Sn produced by the projectile fragmentation of a 345-MeV/nucleon 124Xe beam |journal=Progress of Theoretical and Experimental Physics |number=ptaf051 |date=2025 |doi=10.1093/ptep/ptaf051|doi-access=free }}

| style="text-align:right" | 50

| style="text-align:right" | 48

|

|

|

|

| 0+

|

|

|-id=Tin-99

| rowspan=2|99SnHeaviest known nuclide with more protons than neutrons

| rowspan=2 style="text-align:right" | 50

| rowspan=2 style="text-align:right" | 49

| rowspan=2|98.94850(63)#

| rowspan=2|24(4) ms

| β+ (95%)

| 99In

| rowspan=2|9/2+#

| rowspan=2|

| rowspan=2|

|-

| β+, p (5%)

| 98Cd

|-id=Tin-100

| rowspan=2|100SnHeaviest nuclide with equal numbers of protons and neutrons with no observed α decay

| rowspan=2 style="text-align:right" | 50

| rowspan=2 style="text-align:right" | 50

| rowspan=2|99.93865(26)

| rowspan=2|1.18(8) s

| β+ (>83%)

| 100In

| rowspan=2|0+

| rowspan=2|

| rowspan=2|

|-

| β+, p (<17%)

| 99Cd

|-id=Tin-101

| rowspan=2|101Sn

| rowspan=2 style="text-align:right" | 50

| rowspan=2 style="text-align:right" | 51

| rowspan=2|100.93526(32)

| rowspan=2|2.22(5) s

| β+

| 101In

| rowspan=2|(7/2+)

| rowspan=2|

| rowspan=2|

|-

| β+, p?

| 100Cd

|-id=Tin-102

| 102Sn

| style="text-align:right" | 50

| style="text-align:right" | 52

| 101.93029(11)

| 3.8(2) s

| β+

| 102In

| 0+

|

|

|-id=Tin-102m

| style="text-indent:1em" | 102mSn

| colspan="3" style="text-indent:2em" | 2017(2) keV

| 367(8) ns

| IT

| 102Sn

| (6+)

|

|

|-id=Tin-103

| rowspan=2|103Sn

| rowspan=2 style="text-align:right" | 50

| rowspan=2 style="text-align:right" | 53

| rowspan=2|102.92797(11)#

| rowspan=2|7.0(2) s

| β+ (98.8%)

| 103In

| rowspan=2|5/2+#

| rowspan=2|

| rowspan=2|

|-

| β+, p (1.2%)

| 102Cd

|-id=Tin-104

| 104Sn

| style="text-align:right" | 50

| style="text-align:right" | 54

| 103.923105(6)

| 20.8(5) s

| β+

| 104In

| 0+

|

|

|-id=Tin-105

| rowspan=2|105Sn

| rowspan=2 style="text-align:right" | 50

| rowspan=2 style="text-align:right" | 55

| rowspan=2|104.921268(4)

| rowspan=2|32.7(5) s

| β+

| 105In

| rowspan=2|(5/2+)

| rowspan=2|

| rowspan=2|

|-

| β+, p (0.011%)

| 104Cd

|-id=Tin-106

| 106Sn

| style="text-align:right" | 50

| style="text-align:right" | 56

| 105.916957(5)

| 1.92(8) min

| β+

| 106In

| 0+

|

|

|-id=Tin-107

| 107Sn

| style="text-align:right" | 50

| style="text-align:right" | 57

| 106.915714(6)

| 2.90(5) min

| β+

| 107In

| (5/2+)

|

|

|-id=Tin-108

| 108Sn

| style="text-align:right" | 50

| style="text-align:right" | 58

| 107.911894(6)

| 10.30(8) min

| β+

| 108In

| 0+

|

|

|-id=Tin-109

| 109Sn

| style="text-align:right" | 50

| style="text-align:right" | 59

| 108.911293(9)

| 18.1(2) min

| β+

| 109In

| 5/2+

|

|

|-id=Tin-110

| 110Sn

| style="text-align:right" | 50

| style="text-align:right" | 60

| 109.907845(15)

| 4.154(4) h

| EC

| 110In

| 0+

|

|

|-id=Tin-111

| 111Sn

| style="text-align:right" | 50

| style="text-align:right" | 61

| 110.907741(6)

| 35.3(6) min

| β+

| 111In

| 7/2+

|

|

|-id=Tin-111m

| style="text-indent:1em" | 111mSn

| colspan="3" style="text-indent:2em" | 254.71(4) keV

| 12.5(10) μs

| IT

| 111Sn

| 1/2+

|

|

|-id=Tin-112

| 112Sn

| style="text-align:right" | 50

| style="text-align:right" | 62

|111.9048249(3)

| colspan=3 align=center|Observationally StableBelieved to decay by β+β+ to 112Cd

| 0+

| 0.0097(1)

|

|-id=Tin-113

| 113Sn

| style="text-align:right" | 50

| style="text-align:right" | 63

|112.9051759(17)

| 115.08(4) d

| β+

| 113In

| 1/2+

|

|

|-id=Tin-113m

| rowspan=2 style="text-indent:1em" | 113mSn

| rowspan=2 colspan="3" style="text-indent:2em" | 77.389(19) keV

| rowspan=2|21.4(4) min

| IT (91.1%)

| 113Sn

| rowspan=2|7/2+

| rowspan=2|

| rowspan=2|

|-

| β+ (8.9%)

| 113In

|-id=Tin-114

| 114Sn

| style="text-align:right" | 50

| style="text-align:right" | 64

|113.90278013(3)

| colspan=3 align=center|Stable

| 0+

| 0.0066(1)

|

|-id=Tin-114m

| style="text-indent:1em" | 114mSn

| colspan="3" style="text-indent:2em" | 3087.37(7) keV

| 733(14) ns

| IT

| 114Sn

| 7−

|

|

|-id=Tin-115

| 115Sn

| style="text-align:right" | 50

| style="text-align:right" | 65

| 114.903344695(16)

| colspan=3 align=center|Stable

| 1/2+

| 0.0034(1)

|

|-id=Tin-115m1

| style="text-indent:1em" | 115m1Sn

| colspan="3" style="text-indent:2em" | 612.81(4) keV

| 3.26(8) μs

| IT

| 115Sn

| 7/2+

|

|

|-id=Tin-115m2

| style="text-indent:1em" | 115m2Sn

| colspan="3" style="text-indent:2em" | 713.64(12) keV

| 159(1) μs

| IT

| 115Sn

| 11/2−

|

|

|-id=Tin-116

| 116Sn

| style="text-align:right" | 50

| style="text-align:right" | 66

| 115.90174283(10)

| colspan=3 align=center|Stable

| 0+

| 0.1454(9)

|

|-id=Tin-116m1

| style="text-indent:1em" | 116m1Sn

| colspan="3" style="text-indent:2em" | 2365.975(21) keV

| 348(19) ns

| IT

| 116Sn

| 5−

|

|

|-id=Tin-116m2

| style="text-indent:1em" | 116m2Sn

| colspan="3" style="text-indent:2em" | 3547.16(17) keV

| 833(30) ns

| IT

| 116Sn

| 10+

|

|

|-id=Tin-117

| 117Sn

| style="text-align:right" | 50

| style="text-align:right" | 67

| 116.90295404(52)

| colspan=3 align=center|Stable

| 1/2+

| 0.0768(7)

|

|-id=Tin-117m1

| style="text-indent:1em" | 117m1Sn

| colspan="3" style="text-indent:2em" | 314.58(4) keV

| 13.939(24) d

| IT

| 117Sn

| 11/2−

|

|

|-id=Tin-117m2

| style="text-indent:1em" | 117m2Sn

| colspan="3" style="text-indent:2em" | 2406.4(4) keV

| 1.75(7) μs

| IT

| 117Sn

| (19/2+)

|

|

|-id=Tin-118

| 118Sn

| style="text-align:right" | 50

| style="text-align:right" | 68

| 117.90160663(54)

| colspan=3 align=center|Stable

| 0+

| 0.2422(9)

|

|-id=Tin-118m1

| style="text-indent:1em" | 118m1Sn

| colspan="3" style="text-indent:2em" | 2574.91(4) keV

| 230(10) ns

| IT

| 118Sn

| 7−

|

|

|-id=Tin-118m2

| style="text-indent:1em" | 118m2Sn

| colspan="3" style="text-indent:2em" | 3108.06(22) keV

| 2.52(6) μs

| IT

| 118Sn

| (10+)

|

|

|-id=Tin-119

| 119Sn

| style="text-align:right" | 50

| style="text-align:right" | 69

| 118.90331127(78)

| colspan=3 align=center|Stable

| 1/2+

| 0.0859(4)

|

|-id=Tin-119m1

| style="text-indent:1em" | 119m1Sn

| colspan="3" style="text-indent:2em" | 89.531(13) keV

| 293.1(7) d

| IT

| 119Sn

| 11/2−

|

|

|-id=Tin-119m2

| style="text-indent:1em" | 119m2Sn

| colspan="3" style="text-indent:2em" | 2127.0(10) keV

| 9.6(12) μs

| IT

| 119Sn

| (19/2+)

|

|

|-id=Tin-119m3

| style="text-indent:1em" | 119m3Sn

| colspan="3" style="text-indent:2em" | 2369.0(3) keV

| 96(9) ns

| IT

| 119Sn

| 23/2+

|

|

|-id=Tin-120

| 120Sn

| style="text-align:right" | 50

| style="text-align:right" | 70

| 119.90220256(99)

| colspan=3 align=center|Stable

| 0+

| 0.3258(9)

|

|-id=Tin-120m1

| style="text-indent:1em" | 120m1Sn

| colspan="3" style="text-indent:2em" | 2481.63(6) keV

| 11.8(5) μs

| IT

| 120Sn

| 7−

|

|

|-id=Tin-120m2

| style="text-indent:1em" | 120m2Sn

| colspan="3" style="text-indent:2em" | 2902.22(22) keV

| 6.26(11) μs

| IT

| 120Sn

| 10+

|

|

|-id=Tin-121

| 121SnFission product

| style="text-align:right" | 50

| style="text-align:right" | 71

| 120.9042435(11)

| 27.03(4) h

| β

| 121Sb

| 3/2+

|

|

|-id=Tin-121m1

| rowspan=2 style="text-indent:1em" | 121m1Sn

| rowspan=2 colspan="3" style="text-indent:2em" | 6.31(6) keV

| rowspan=2|43.9(5) y

| IT (77.6%)

| 121Sn

| rowspan=2| 11/2−

| rowspan=2|

| rowspan=2|

|-

| β (22.4%)

| 121Sb

|-id=Tin-121m2

| style="text-indent:1em" | 121m2Sn

| colspan="3" style="text-indent:2em" | 1998.68(13) keV

| 5.3(5) μs

| IT

| 121Sn

| 19/2+

|

|

|-id=Tin-121m3

| style="text-indent:1em" | 121m3Sn

| colspan="3" style="text-indent:2em" | 2222.0(2) keV

| 520(50) ns

| IT

| 121Sn

| 23/2+

|

|

|-id=Tin-121m4

| style="text-indent:1em" | 121m4Sn

| colspan="3" style="text-indent:2em" | 2833.9(2) keV

| 167(25) ns

| IT

| 121Sn

| 27/2−

|

|

|-id=Tin-122

| 122Sn

| style="text-align:right" | 50

| style="text-align:right" | 72

| 121.9034455(26)

| colspan=3 align=center|Observationally StableBelieved to undergo ββ decay to 122Te

| 0+

| 0.0463(3)

|

|-id=Tin-122m1

| style="text-indent:1em" | 122m1Sn

| colspan="3" style="text-indent:2em" | 2409.03(4) keV

| 7.5(9) μs

| IT

| 122Sn

| 7−

|

|

|-id=Tin-122m2

| style="text-indent:1em" | 122m2Sn

| colspan="3" style="text-indent:2em" | 2765.5(3) keV

| 62(3) μs

| IT

| 122Sn

| 10+

|

|

|-id=Tin-122m3

| style="text-indent:1em" | 122m3Sn

| colspan="3" style="text-indent:2em" | 4721.2(3) keV

| 139(9) ns

| IT

| 122Sn

| 15−

|

|

|-id=Tin-123

| 123Sn

| style="text-align:right" | 50

| style="text-align:right" | 73

| 122.9057271(27)

| 129.2(4) d

| β

| 123Sb

| 11/2−

|

|

|-id=Tin-123m1

| style="text-indent:1em" | 123m1Sn

| colspan="3" style="text-indent:2em" | 24.6(4) keV

| 40.06(1) min

| β

| 123Sb

| 3/2+

|

|

|-id=Tin-123m2

| style="text-indent:1em" | 123m2Sn

| colspan="3" style="text-indent:2em" | 1944.90(12) keV

| 7.4(26) μs

| IT

| 123Sn

| 19/2+

|

|

|-id=Tin-123m3

| style="text-indent:1em" | 123m3Sn

| colspan="3" style="text-indent:2em" | 2152.66(19) keV

| 6 μs

| IT

| 123Sn

| 23/2+

|

|

|-id=Tin-123m4

| style="text-indent:1em" | 123m4Sn

| colspan="3" style="text-indent:2em" | 2712.47(21) keV

| 34 μs

| IT

| 123Sn

| 27/2−

|

|

|-id=Tin-124

| 124Sn

| style="text-align:right" | 50

| style="text-align:right" | 74

| 123.9052796(14)

| colspan=3 align=center|Observationally StableBelieved to undergo ββ decay to 124Te with a half-life over 1×1017 years

| 0+

| 0.0579(5)

|

|-id=Tin-124m1

| style="text-indent:1em" | 124m1Sn

| colspan="3" style="text-indent:2em" | 2204.620(23) keV

| 270(60) ns

| IT

| 124Sn

| 5-

|

|

|-id=Tin-124m2

| style="text-indent:1em" | 124m2Sn

| colspan="3" style="text-indent:2em" | 2324.96(4) keV

| 3.1(5) μs

| IT

| 124Sn

| 7−

|

|

|-id=Tin-124m3

| style="text-indent:1em" | 124m3Sn

| colspan="3" style="text-indent:2em" | 2656.6(3) keV

| 51(3) μs

| IT

| 124Sn

| 10+

|

|

|-id=Tin-124m4

| style="text-indent:1em" | 124m4Sn

| colspan="3" style="text-indent:2em" | 4552.4(3) keV

| 260(25) ns

| IT

| 124Sn

| 15−

|

|

|-id=Tin-125

| 125Sn

| style="text-align:right" | 50

| style="text-align:right" | 75

| 124.9077894(14)

| 9.634(15) d

| β

| 125Sb

| 11/2−

|

|

|-id=Tin-125m1

| style="text-indent:1em" | 125m1Sn

| colspan="3" style="text-indent:2em" | 27.50(14) keV

| 9.77(25) min

| β

| 125Sb

| 3/2+

|

|

|-id=Tin-125m2

| style="text-indent:1em" | 125m2Sn

| colspan="3" style="text-indent:2em" | 1892.8(3) keV

| 6.2(2) μs

| IT

| 125Sn

| 19/2+

|

|

|-id=Tin-125m3

| style="text-indent:1em" | 125m3Sn

| colspan="3" style="text-indent:2em" | 2059.5(4) keV

| 650(60) ns

| IT

| 125Sn

| 23/2+

|

|

|-id=Tin-125m4

| style="text-indent:1em" | 125m4Sn

| colspan="3" style="text-indent:2em" | 2623.5(5) keV

| 230(17) ns

| IT

| 125Sn

| 27/2−

|

|

|-

| 126SnLong-lived fission product

| style="text-align:right" | 50

| style="text-align:right" | 76

| 125.907658(11)

| 2.30(14)×105 y

| β

| 126Sb

| 0+

| < 10−14{{cite journal |last1=Shen |first1=Hongtao |last2=Jiang |first2=Shan |last3=He |first3=Ming |last4=Dong |first4=Kejun |last5=Li |first5=Chaoli |last6=He |first6=Guozhu |last7=Wu |first7=Shaolei |last8=Gong |first8=Jie |last9=Lu |first9=Liyan |last10=Li |first10=Shizhuo |last11=Zhang |first11=Dawei |last12=Shi |first12=Guozhu |last13=Huang |first13=Chuntang |last14=Wu |first14=Shaoyong |title=Study on measurement of fission product nuclide 126Sn by AMS |journal=Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms |date=February 2011 |volume=269 |issue=3 |pages=392–395 |doi=10.1016/j.nimb.2010.11.059 |url=https://accelconf.web.cern.ch/HIAT2009/papers/g-07.pdf}}

|

|-id=Tin-126m1

| style="text-indent:1em" | 126m1Sn

| colspan="3" style="text-indent:2em" | 2218.99(8) keV

| 6.1(7) μs

| IT

| 126Sn

| 7−

|

|

|-id=Tin-126m2

| style="text-indent:1em" | 126m2Sn

| colspan="3" style="text-indent:2em" | 2564.5(5) keV

| 7.6(3) μs

| IT

| 126Sn

| 10+

|

|

|-id=Tin-126m3

| style="text-indent:1em" | 126m3Sn

| colspan="3" style="text-indent:2em" | 4347.4(4) keV

| 114(2) ns

| IT

| 126Sn

| 15−

|

|

|-id=Tin-127

| 127Sn

| style="text-align:right" | 50

| style="text-align:right" | 77

| 126.9103917(99)

| 2.10(4) h

| β

| 127Sb

| 11/2−

|

|

|-id=Tin-127m1

| style="text-indent:1em" | 127m1Sn

| colspan="3" style="text-indent:2em" | 5.07(6) keV

| 4.13(3) min

| β

| 127Sb

| 3/2+

|

|

|-id=Tin-127m2

| style="text-indent:1em" | 127m2Sn

| colspan="3" style="text-indent:2em" | 1826.67(16) keV

| 4.52(15) μs

| IT

| 127Sn

| 19/2+

|

|

|-id=Tin-127m3

| style="text-indent:1em" | 127m3Sn

| colspan="3" style="text-indent:2em" | 1930.97(17) keV

| 1.26(15) μs

| IT

| 127Sn

| (23/2+)

|

|

|-id=Tin-127m4

| style="text-indent:1em" | 127m4Sn

| colspan="3" style="text-indent:2em" | 2552.4(10) keV

| 250 (30) ns

| IT

| 127Sn

| (27/2−)

|

|

|-id=Tin-128

| 128Sn

| style="text-align:right" | 50

| style="text-align:right" | 78

|127.910508(19)

| 59.07(14) min

| β

| 128Sb

| 0+

|

|

|-id=Tin-128m1

| style="text-indent:1em" | 128m1Sn

| colspan="3" style="text-indent:2em" | 2091.50(11) keV

| 6.5(5) s

| IT

| 128Sn

| 7−

|

|

|-id=Tin-128m2

| style="text-indent:1em" | 128m2Sn

| colspan="3" style="text-indent:2em" | 2491.91(17) keV

| 2.91(14) μs

| IT

| 128Sn

| 10+

|

|

|-id=Tin-128m3

| style="text-indent:1em" | 128m3Sn

| colspan="3" style="text-indent:2em" | 4099.5(4) keV

| 220(30) ns

| IT

| 128Sn

| (15−)

|

|

|-id=Tin-129

| 129Sn

| style="text-align:right" | 50

| style="text-align:right" | 79

| 128.913482(19)

| 2.23(4) min

| β

| 129Sb

| 3/2+

|

|

|-id=Tin-129m1

| style="text-indent:1em" | 129m1Sn

| colspan="3" style="text-indent:2em" | 35.15(5) keV

| 6.9(1) min

| β

| 129Sb

| 11/2−

|

|

|-id=Tin-129m2

| style="text-indent:1em" | 129m2Sn

| colspan="3" style="text-indent:2em" | 1761.6(10) keV

| 3.49(11) μs

| IT

| 129Sn

| (19/2+)

|

|

|-id=Tin-129m3

| style="text-indent:1em" | 129m3Sn

| colspan="3" style="text-indent:2em" | 1802.6(10) keV

| 2.22(13) μs

| IT

| 129Sn

| 23/2+

|

|

|-id=Tin-129m4

| style="text-indent:1em" | 129m4Sn

| colspan="3" style="text-indent:2em" | 2552.9(11) keV

| 221(18) ns

| IT

| 129Sn

| (27/2−)

|

|

|-id=Tin-130

| 130Sn

| style="text-align:right" | 50

| style="text-align:right" | 80

|129.9139745(20)

| 3.72(7) min

| β

| 130Sb

| 0+

|

|

|-id=Tin-130m1

| style="text-indent:1em" | 130m1Sn

| colspan="3" style="text-indent:2em" | 1946.88(10) keV

| 1.7(1) min

| β

| 130Sb

| 7−

|

|

|-id=Tin-130m2

| style="text-indent:1em" | 130m2Sn

| colspan="3" style="text-indent:2em" | 2434.79(12) keV

| 1.501(17) μs

| IT

| 130Sn

| (10+)

|

|

|-id=Tin-131

| 131Sn

| style="text-align:right" | 50

| style="text-align:right" | 81

| 130.917053(4)

| 56.0(5) s

| β

| 131Sb

| 3/2+

|

|

|-id=Tin-131m1

| rowspan=2 style="text-indent:1em" | 131m1Sn

| rowspan=2 colspan="3" style="text-indent:2em" | 65.1(3) keV

| rowspan=2|58.4(5) s

| β

| 131Sb

| rowspan=2|11/2−

| rowspan=2|

| rowspan=2|

|-

| IT?

| 131Sn

|-id=Tin-131m2

| style="text-indent:1em" | 131m2Sn

| colspan="3" style="text-indent:2em" | 4670.0(4) keV

| 316(5) ns

| IT

| 131Sn

| (23/2−)

|

|

|-id=Tin-132

| 132Sn

| style="text-align:right" | 50

| style="text-align:right" | 82

| 131.9178239(21)

| 39.7(8) s

| β

| 132Sb

| 0+

|

|

|-id=Tin-132m

| style="text-indent:1em" | 132mSn

| colspan="3" style="text-indent:2em" | 4848.52(20) keV

| 2.080(16) μs

| IT

| 132Sn

| 8+

|

|

|-id=Tin-133

| rowspan=2|133Sn

| rowspan=2 style="text-align:right" | 50

| rowspan=2 style="text-align:right" | 83

| rowspan=2|132.9239138(20)

| rowspan=2|1.37(7) s

| β (99.97%)

| 133Sb

| rowspan=2|7/2−

| rowspan=2|

| rowspan=2|

|-

| βn (.0294%)

| 132Sb

|-id=Tin-134

| rowspan=2|134Sn

| rowspan=2 style="text-align:right" | 50

| rowspan=2 style="text-align:right" | 84

| rowspan=2| 133.928680(3)

| rowspan=2| 0.93(8) s

| β (83%)

| 134Sb

| rowspan=2|0+

| rowspan=2|

| rowspan=2|

|-

| βn (17%)

| 133Sb

|-id=Tin-134m

| style="text-indent:1em" | 134mSn

| colspan="3" style="text-indent:2em" | 1247.4(5) keV

| 87(8) ns

| IT

| 134Sn

| 6+

|

|

|-id=Tin-135

| rowspan=3|135Sn

| rowspan=3 style="text-align:right" | 50

| rowspan=3 style="text-align:right" | 85

| rowspan=3| 134.934909(3)

| rowspan=3|515(5) ms

| β (79%)

| 135Sb

| rowspan=3|7/2−#

| rowspan=3|

| rowspan=3|

|-

| βn (21%)

| 134Sb

|-

| β2n?

| 133Sb

|-id=Tin-136

| rowspan=3|136Sn

| rowspan=3 style="text-align:right" | 50

| rowspan=3 style="text-align:right" | 86

| rowspan=3| 135.93970(22)#

| rowspan=3|355(18) ms

| β (72%)

| 136Sb

| rowspan=3|0+

| rowspan=3|

| rowspan=3|

|-

| βn (28%)

| 135Sb

|-

| β2n?

| 134Sb

|-id=Tin-137

| rowspan=3|137Sn

| rowspan=3 style="text-align:right" | 50

| rowspan=3 style="text-align:right" | 87

| rowspan=3|136.94616(32)#

| rowspan=3|249(15) ms

| β (52%)

| 137Sb

| rowspan=3|5/2−#

| rowspan=3|

| rowspan=3|

|-

| βn (48%)

| 136Sb

|-

| β2n?

| 135Sb

|-id=Tin-138

| rowspan=3|138Sn

| rowspan=3 style="text-align:right" | 50

| rowspan=3 style="text-align:right" | 88

| rowspan=3|137.95114(43)#

| rowspan=3|148(9) ms

| β (64%)

| 138Sb

| rowspan=3|0+

| rowspan=3|

| rowspan=3|

|-

| βn (36%)

| 137Sb

|-

| β2n?

| 136Sb

|-id=Tin-138m

| style="text-indent:1em" | 138mSn

| colspan="3" style="text-indent:2em" | 1344(2) keV

| 210(45) ns

| IT

| 138Sn

| (6+)

|

|

|-id=Tin-139

| rowspan=3|139Sn

| rowspan=3 style="text-align:right" | 50

| rowspan=3 style="text-align:right" | 89

| rowspan=3|138.95780(43)#

| rowspan=3|120(38) ms

| β

| 139Sb

| rowspan=3|5/2−#

| rowspan=3|

| rowspan=3|

|-

| βn?

| 138Sb

|-

| β2n?

| 137Sb

|-id=Tin-140

|rowspan=3| 140Sn

|rowspan=3 style="text-align:right" | 50

|rowspan=3 style="text-align:right" | 90

|rowspan=3| 139.96297(32)#

|rowspan=3| 50# ms
[>550 ns]

?

|140Sb

|rowspan=3|0+

|rowspan=3|

|rowspan=3|

|-

n?

|139Sb

|-

2n?

|138Sb

{{Isotopes table/footer}}

Tin-117m

Tin-117m is a radioisotope of tin. One of its uses is in a particulate suspension to treat canine synovitis (radiosynoviorthesis).{{Cite web |title=Procedure for Use of Synovetin OA |url=https://www.nrc.gov/docs/ML2017/ML20178A657.pdf|work=nrc.gov }}

Tin-121m

Tin-121m (121mSn) is a radioisotope and nuclear isomer of tin with a half-life of 43.9 years.

In a normal thermal reactor, it has a very low fission product yield; thus, this isotope is not a significant contributor to nuclear waste. Fast fission or fission of some heavier actinides will produce tin-121 at higher yields. For example, its yield from uranium-235 is 0.0007% per thermal fission and 0.002% per fast fission.M. B. Chadwick et al, "Evaluated Nuclear Data File (ENDF) : ENDF/B-VII.1: Nuclear Data for Science and Technology: Cross Sections, Covariances, Fission Product Yields, and Decay Data", Nucl. Data Sheets 112(2011)2887. (accessed at https://www-nds.iaea.org/exfor/endf.htm)

Tin-126

{{Chain yield| 0.0481 ± 0.0077| 0.87 ± 0.20

| 0.224 ± 0.018| 0.278 ± 0.022 | 1.92 ± 0.31

| 0.056 ± 0.004| 0.0137 ± 0.001 | 1.70 ± 0.14

| 0.054 ± 0.004| 1.31 ± 0.21

| 0.199 ± 0.016| 0.26 ± 0.02 | 2.02 ± 0.22

| 0.082 ± 0.019| 0.22 ± 0.03 | ?

|data_ref=

}}

Tin-126 is a radioisotope of tin and one of the only seven long-lived fission products of uranium and plutonium. While tin-126's half-life of 230,000 years translates to a low specific activity of gamma radiation, its short-lived decay products, two isomers of antimony-126, emit 17 and 40 keV gamma radiation and a 3.67 MeV beta particle on their way to stable tellurium-126, making external exposure to tin-126 a potential concern.

Tin-126 is in the middle of the mass range for fission products. Thermal reactors, which make up almost all current nuclear power plants, produce it at a very low yield (0.056% for 235U), since slow neutrons almost always fission 235U or 239Pu into unequal halves. Fast fission in a fast reactor or nuclear weapon, or fission of some heavy minor actinides such as californium, will produce it at higher yields.

  • [https://web.archive.org/web/20091229041655/http://www.ead.anl.gov/pub/doc/tin.pdf ANL factsheet]

{{Clear}}

References

{{Reflist}}

  • Isotope masses from:
  • {{NUBASE 2003}}
  • Isotopic compositions and standard atomic masses from:
  • {{CIAAW2003}}
  • {{CIAAW 2005}}
  • Half-life, spin, and isomer data selected from:
  • {{NUBASE 2003}}
  • {{NuDat 2}}
  • {{CRC85|chapter=11}}

{{Navbox element isotopes}}

Category:Tin

Tin