Isotopes of tin#Tin-126

{{Short description|none}}

{{Infobox tin isotopes}}

Tin (50Sn) is the element with the greatest number of stable isotopes (ten; three of them are potentially radioactive but have not been observed to decay). This is probably related to the fact that 50 is a "magic number" of protons. In addition, 32 unstable tin isotopes are known, including tin-100 (100Sn) (discovered in 1994){{cite journal |author=K. Sümmerer |author2=R. Schneider |author3=T Faestermann |author4=J. Friese |author5=H. Geissel |author6=R. Gernhäuser |author7=H. Gilg |author8=F. Heine |author9=J. Homolka |author10=P. Kienle |author11=H. J. Körner |author12=G. Münzenberg |author13=J. Reinhold |author14=K. Zeitelhack |title=Identification and decay spectroscopy of 100Sn at the GSI projectile fragment separator FRS |journal=Nuclear Physics A |date=April 1997 |volume=616 |issue=1–2 |pages=341–345 |doi=10.1016/S0375-9474(97)00106-1|bibcode=1997NuPhA.616..341S}} and tin-132 (132Sn), which are both "doubly magic". The longest-lived tin radioisotope is tin-126 (126Sn), with a half-life of 230,000 years. The other 28 radioisotopes have half-lives of less than a year.

List of isotopes

{{Anchor|Tin-100m}}

{{Isotopes table

| symbol = Sn

| refs = NUBASE2020, AME2020 II

| notes = m, unc(), mass#, exen#, hl#, spin(), spin#, daughter-st, n, p, EC, IT

}}

|-id=Tin-98

| 98Sn{{cite journal |first1=H. |last1=Suzuki |first2=N. |last2=Fukuda |first3=H. |last3=Takeda |display-authors=et al. |title=Discovery of 98Sn produced by the projectile fragmentation of a 345-MeV/nucleon 124Xe beam |journal=Progress of Theoretical and Experimental Physics |number=ptaf051 |date=2025 |doi=10.1093/ptep/ptaf051|doi-access=free }}

| style="text-align:right" | 50

| style="text-align:right" | 48

|

|

|

|

| 0+

|

|

|-id=Tin-99

| rowspan=2|99SnHeaviest known nuclide with more protons than neutrons

| rowspan=2 style="text-align:right" | 50

| rowspan=2 style="text-align:right" | 49

| rowspan=2|98.94850(63)#

| rowspan=2|24(4) ms

| β+ (95%)

| 99In

| rowspan=2|9/2+#

| rowspan=2|

| rowspan=2|

|-

| β+, p (5%)

| 98Cd

|-id=Tin-100

| rowspan=2|100SnHeaviest nuclide with equal numbers of protons and neutrons with no observed α decay

| rowspan=2 style="text-align:right" | 50

| rowspan=2 style="text-align:right" | 50

| rowspan=2|99.93865(26)

| rowspan=2|1.18(8) s

| β+ (>83%)

| 100In

| rowspan=2|0+

| rowspan=2|

| rowspan=2|

|-

| β+, p (<17%)

| 99Cd

|-id=Tin-101

| rowspan=2|101Sn

| rowspan=2 style="text-align:right" | 50

| rowspan=2 style="text-align:right" | 51

| rowspan=2|100.93526(32)

| rowspan=2|2.22(5) s

| β+

| 101In

| rowspan=2|(7/2+)

| rowspan=2|

| rowspan=2|

|-

| β+, p?

| 100Cd

|-id=Tin-102

| 102Sn

| style="text-align:right" | 50

| style="text-align:right" | 52

| 101.93029(11)

| 3.8(2) s

| β+

| 102In

| 0+

|

|

|-id=Tin-102m

| style="text-indent:1em" | 102mSn

| colspan="3" style="text-indent:2em" | 2017(2) keV

| 367(8) ns

| IT

| 102Sn

| (6+)

|

|

|-id=Tin-103

| rowspan=2|103Sn

| rowspan=2 style="text-align:right" | 50

| rowspan=2 style="text-align:right" | 53

| rowspan=2|102.92797(11)#

| rowspan=2|7.0(2) s

| β+ (98.8%)

| 103In

| rowspan=2|5/2+#

| rowspan=2|

| rowspan=2|

|-

| β+, p (1.2%)

| 102Cd

|-id=Tin-104

| 104Sn

| style="text-align:right" | 50

| style="text-align:right" | 54

| 103.923105(6)

| 20.8(5) s

| β+

| 104In

| 0+

|

|

|-id=Tin-105

| rowspan=2|105Sn

| rowspan=2 style="text-align:right" | 50

| rowspan=2 style="text-align:right" | 55

| rowspan=2|104.921268(4)

| rowspan=2|32.7(5) s

| β+

| 105In

| rowspan=2|(5/2+)

| rowspan=2|

| rowspan=2|

|-

| β+, p (0.011%)

| 104Cd

|-id=Tin-106

| 106Sn

| style="text-align:right" | 50

| style="text-align:right" | 56

| 105.916957(5)

| 1.92(8) min

| β+

| 106In

| 0+

|

|

|-id=Tin-107

| 107Sn

| style="text-align:right" | 50

| style="text-align:right" | 57

| 106.915714(6)

| 2.90(5) min

| β+

| 107In

| (5/2+)

|

|

|-id=Tin-108

| 108Sn

| style="text-align:right" | 50

| style="text-align:right" | 58

| 107.911894(6)

| 10.30(8) min

| β+

| 108In

| 0+

|

|

|-id=Tin-109

| 109Sn

| style="text-align:right" | 50

| style="text-align:right" | 59

| 108.911293(9)

| 18.1(2) min

| β+

| 109In

| 5/2+

|

|

|-id=Tin-110

| 110Sn

| style="text-align:right" | 50

| style="text-align:right" | 60

| 109.907845(15)

| 4.154(4) h

| EC

| 110In

| 0+

|

|

|-id=Tin-111

| 111Sn

| style="text-align:right" | 50

| style="text-align:right" | 61

| 110.907741(6)

| 35.3(6) min

| β+

| 111In

| 7/2+

|

|

|-id=Tin-111m

| style="text-indent:1em" | 111mSn

| colspan="3" style="text-indent:2em" | 254.71(4) keV

| 12.5(10) μs

| IT

| 111Sn

| 1/2+

|

|

|-id=Tin-112

| 112Sn

| style="text-align:right" | 50

| style="text-align:right" | 62

|111.9048249(3)

| colspan=3 align=center|Observationally StableBelieved to decay by β+β+ to 112Cd

| 0+

| 0.0097(1)

|

|-id=Tin-113

| 113Sn

| style="text-align:right" | 50

| style="text-align:right" | 63

|112.9051759(17)

| 115.08(4) d

| β+

| 113In

| 1/2+

|

|

|-id=Tin-113m

| rowspan=2 style="text-indent:1em" | 113mSn

| rowspan=2 colspan="3" style="text-indent:2em" | 77.389(19) keV

| rowspan=2|21.4(4) min

| IT (91.1%)

| 113Sn

| rowspan=2|7/2+

| rowspan=2|

| rowspan=2|

|-

| β+ (8.9%)

| 113In

|-id=Tin-114

| 114Sn

| style="text-align:right" | 50

| style="text-align:right" | 64

|113.90278013(3)

| colspan=3 align=center|Stable

| 0+

| 0.0066(1)

|

|-id=Tin-114m

| style="text-indent:1em" | 114mSn

| colspan="3" style="text-indent:2em" | 3087.37(7) keV

| 733(14) ns

| IT

| 114Sn

| 7−

|

|

|-id=Tin-115

| 115Sn

| style="text-align:right" | 50

| style="text-align:right" | 65

| 114.903344695(16)

| colspan=3 align=center|Stable

| 1/2+

| 0.0034(1)

|

|-id=Tin-115m1

| style="text-indent:1em" | 115m1Sn

| colspan="3" style="text-indent:2em" | 612.81(4) keV

| 3.26(8) μs

| IT

| 115Sn

| 7/2+

|

|

|-id=Tin-115m2

| style="text-indent:1em" | 115m2Sn

| colspan="3" style="text-indent:2em" | 713.64(12) keV

| 159(1) μs

| IT

| 115Sn

| 11/2−

|

|

|-id=Tin-116

| 116Sn

| style="text-align:right" | 50

| style="text-align:right" | 66

| 115.90174283(10)

| colspan=3 align=center|Stable

| 0+

| 0.1454(9)

|

|-id=Tin-116m1

| style="text-indent:1em" | 116m1Sn

| colspan="3" style="text-indent:2em" | 2365.975(21) keV

| 348(19) ns

| IT

| 116Sn

| 5−

|

|

|-id=Tin-116m2

| style="text-indent:1em" | 116m2Sn

| colspan="3" style="text-indent:2em" | 3547.16(17) keV

| 833(30) ns

| IT

| 116Sn

| 10+

|

|

|-id=Tin-117

| 117SnFission product

| style="text-align:right" | 50

| style="text-align:right" | 67

| 116.90295404(52)

| colspan=3 align=center|Stable

| 1/2+

| 0.0768(7)

|

|-id=Tin-117m1

| style="text-indent:1em" | 117m1Sn

| colspan="3" style="text-indent:2em" | 314.58(4) keV

| 13.939(24) d

| IT

| 117Sn

| 11/2−

|

|

|-id=Tin-117m2

| style="text-indent:1em" | 117m2Sn

| colspan="3" style="text-indent:2em" | 2406.4(4) keV

| 1.75(7) μs

| IT

| 117Sn

| (19/2+)

|

|

|-id=Tin-118

| 118Sn

| style="text-align:right" | 50

| style="text-align:right" | 68

| 117.90160663(54)

| colspan=3 align=center|Stable

| 0+

| 0.2422(9)

|

|-id=Tin-118m1

| style="text-indent:1em" | 118m1Sn

| colspan="3" style="text-indent:2em" | 2574.91(4) keV

| 230(10) ns

| IT

| 118Sn

| 7−

|

|

|-id=Tin-118m2

| style="text-indent:1em" | 118m2Sn

| colspan="3" style="text-indent:2em" | 3108.06(22) keV

| 2.52(6) μs

| IT

| 118Sn

| (10+)

|

|

|-id=Tin-119

| 119Sn

| style="text-align:right" | 50

| style="text-align:right" | 69

| 118.90331127(78)

| colspan=3 align=center|Stable

| 1/2+

| 0.0859(4)

|

|-id=Tin-119m1

| style="text-indent:1em" | 119m1Sn

| colspan="3" style="text-indent:2em" | 89.531(13) keV

| 293.1(7) d

| IT

| 119Sn

| 11/2−

|

|

|-id=Tin-119m2

| style="text-indent:1em" | 119m2Sn

| colspan="3" style="text-indent:2em" | 2127.0(10) keV

| 9.6(12) μs

| IT

| 119Sn

| (19/2+)

|

|

|-id=Tin-119m3

| style="text-indent:1em" | 119m3Sn

| colspan="3" style="text-indent:2em" | 2369.0(3) keV

| 96(9) ns

| IT

| 119Sn

| 23/2+

|

|

|-id=Tin-120

| 120Sn

| style="text-align:right" | 50

| style="text-align:right" | 70

| 119.90220256(99)

| colspan=3 align=center|Stable

| 0+

| 0.3258(9)

|

|-id=Tin-120m1

| style="text-indent:1em" | 120m1Sn

| colspan="3" style="text-indent:2em" | 2481.63(6) keV

| 11.8(5) μs

| IT

| 120Sn

| 7−

|

|

|-id=Tin-120m2

| style="text-indent:1em" | 120m2Sn

| colspan="3" style="text-indent:2em" | 2902.22(22) keV

| 6.26(11) μs

| IT

| 120Sn

| 10+

|

|

|-id=Tin-121

| 121Sn

| style="text-align:right" | 50

| style="text-align:right" | 71

| 120.9042435(11)

| 27.03(4) h

| β

| 121Sb

| 3/2+

|

|

|-id=Tin-121m1

| rowspan=2 style="text-indent:1em" | 121m1Sn

| rowspan=2 colspan="3" style="text-indent:2em" | 6.31(6) keV

| rowspan=2|43.9(5) y

| IT (77.6%)

| 121Sn

| rowspan=2| 11/2−

| rowspan=2|

| rowspan=2|

|-

| β (22.4%)

| 121Sb

|-id=Tin-121m2

| style="text-indent:1em" | 121m2Sn

| colspan="3" style="text-indent:2em" | 1998.68(13) keV

| 5.3(5) μs

| IT

| 121Sn

| 19/2+

|

|

|-id=Tin-121m3

| style="text-indent:1em" | 121m3Sn

| colspan="3" style="text-indent:2em" | 2222.0(2) keV

| 520(50) ns

| IT

| 121Sn

| 23/2+

|

|

|-id=Tin-121m4

| style="text-indent:1em" | 121m4Sn

| colspan="3" style="text-indent:2em" | 2833.9(2) keV

| 167(25) ns

| IT

| 121Sn

| 27/2−

|

|

|-id=Tin-122

| 122Sn

| style="text-align:right" | 50

| style="text-align:right" | 72

| 121.9034455(26)

| colspan=3 align=center|Observationally StableBelieved to undergo ββ decay to 122Te

| 0+

| 0.0463(3)

|

|-id=Tin-122m1

| style="text-indent:1em" | 122m1Sn

| colspan="3" style="text-indent:2em" | 2409.03(4) keV

| 7.5(9) μs

| IT

| 122Sn

| 7−

|

|

|-id=Tin-122m2

| style="text-indent:1em" | 122m2Sn

| colspan="3" style="text-indent:2em" | 2765.5(3) keV

| 62(3) μs

| IT

| 122Sn

| 10+

|

|

|-id=Tin-122m3

| style="text-indent:1em" | 122m3Sn

| colspan="3" style="text-indent:2em" | 4721.2(3) keV

| 139(9) ns

| IT

| 122Sn

| 15−

|

|

|-id=Tin-123

| 123Sn

| style="text-align:right" | 50

| style="text-align:right" | 73

| 122.9057271(27)

| 129.2(4) d

| β

| 123Sb

| 11/2−

|

|

|-id=Tin-123m1

| style="text-indent:1em" | 123m1Sn

| colspan="3" style="text-indent:2em" | 24.6(4) keV

| 40.06(1) min

| β

| 123Sb

| 3/2+

|

|

|-id=Tin-123m2

| style="text-indent:1em" | 123m2Sn

| colspan="3" style="text-indent:2em" | 1944.90(12) keV

| 7.4(26) μs

| IT

| 123Sn

| 19/2+

|

|

|-id=Tin-123m3

| style="text-indent:1em" | 123m3Sn

| colspan="3" style="text-indent:2em" | 2152.66(19) keV

| 6 μs

| IT

| 123Sn

| 23/2+

|

|

|-id=Tin-123m4

| style="text-indent:1em" | 123m4Sn

| colspan="3" style="text-indent:2em" | 2712.47(21) keV

| 34 μs

| IT

| 123Sn

| 27/2−

|

|

|-id=Tin-124

| 124Sn

| style="text-align:right" | 50

| style="text-align:right" | 74

| 123.9052796(14)

| colspan=3 align=center|Observationally StableBelieved to undergo ββ decay to 124Te with a half-life over 1×1017 years

| 0+

| 0.0579(5)

|

|-id=Tin-124m1

| style="text-indent:1em" | 124m1Sn

| colspan="3" style="text-indent:2em" | 2204.620(23) keV

| 270(60) ns

| IT

| 124Sn

| 5-

|

|

|-id=Tin-124m2

| style="text-indent:1em" | 124m2Sn

| colspan="3" style="text-indent:2em" | 2324.96(4) keV

| 3.1(5) μs

| IT

| 124Sn

| 7−

|

|

|-id=Tin-124m3

| style="text-indent:1em" | 124m3Sn

| colspan="3" style="text-indent:2em" | 2656.6(3) keV

| 51(3) μs

| IT

| 124Sn

| 10+

|

|

|-id=Tin-124m4

| style="text-indent:1em" | 124m4Sn

| colspan="3" style="text-indent:2em" | 4552.4(3) keV

| 260(25) ns

| IT

| 124Sn

| 15−

|

|

|-id=Tin-125

| 125Sn

| style="text-align:right" | 50

| style="text-align:right" | 75

| 124.9077894(14)

| 9.634(15) d

| β

| 125Sb

| 11/2−

|

|

|-id=Tin-125m1

| style="text-indent:1em" | 125m1Sn

| colspan="3" style="text-indent:2em" | 27.50(14) keV

| 9.77(25) min

| β

| 125Sb

| 3/2+

|

|

|-id=Tin-125m2

| style="text-indent:1em" | 125m2Sn

| colspan="3" style="text-indent:2em" | 1892.8(3) keV

| 6.2(2) μs

| IT

| 125Sn

| 19/2+

|

|

|-id=Tin-125m3

| style="text-indent:1em" | 125m3Sn

| colspan="3" style="text-indent:2em" | 2059.5(4) keV

| 650(60) ns

| IT

| 125Sn

| 23/2+

|

|

|-id=Tin-125m4

| style="text-indent:1em" | 125m4Sn

| colspan="3" style="text-indent:2em" | 2623.5(5) keV

| 230(17) ns

| IT

| 125Sn

| 27/2−

|

|

|-

| 126SnLong-lived fission product

| style="text-align:right" | 50

| style="text-align:right" | 76

| 125.907658(11)

| 2.30(14)×105 y

| β

| 126Sb

| 0+

| < 10−14{{cite journal |last1=Shen |first1=Hongtao |last2=Jiang |first2=Shan |last3=He |first3=Ming |last4=Dong |first4=Kejun |last5=Li |first5=Chaoli |last6=He |first6=Guozhu |last7=Wu |first7=Shaolei |last8=Gong |first8=Jie |last9=Lu |first9=Liyan |last10=Li |first10=Shizhuo |last11=Zhang |first11=Dawei |last12=Shi |first12=Guozhu |last13=Huang |first13=Chuntang |last14=Wu |first14=Shaoyong |title=Study on measurement of fission product nuclide 126Sn by AMS |journal=Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms |date=February 2011 |volume=269 |issue=3 |pages=392–395 |doi=10.1016/j.nimb.2010.11.059 |url=https://accelconf.web.cern.ch/HIAT2009/papers/g-07.pdf}}

|

|-id=Tin-126m1

| style="text-indent:1em" | 126m1Sn

| colspan="3" style="text-indent:2em" | 2218.99(8) keV

| 6.1(7) μs

| IT

| 126Sn

| 7−

|

|

|-id=Tin-126m2

| style="text-indent:1em" | 126m2Sn

| colspan="3" style="text-indent:2em" | 2564.5(5) keV

| 7.6(3) μs

| IT

| 126Sn

| 10+

|

|

|-id=Tin-126m3

| style="text-indent:1em" | 126m3Sn

| colspan="3" style="text-indent:2em" | 4347.4(4) keV

| 114(2) ns

| IT

| 126Sn

| 15−

|

|

|-id=Tin-127

| 127Sn

| style="text-align:right" | 50

| style="text-align:right" | 77

| 126.9103917(99)

| 2.10(4) h

| β

| 127Sb

| 11/2−

|

|

|-id=Tin-127m1

| style="text-indent:1em" | 127m1Sn

| colspan="3" style="text-indent:2em" | 5.07(6) keV

| 4.13(3) min

| β

| 127Sb

| 3/2+

|

|

|-id=Tin-127m2

| style="text-indent:1em" | 127m2Sn

| colspan="3" style="text-indent:2em" | 1826.67(16) keV

| 4.52(15) μs

| IT

| 127Sn

| 19/2+

|

|

|-id=Tin-127m3

| style="text-indent:1em" | 127m3Sn

| colspan="3" style="text-indent:2em" | 1930.97(17) keV

| 1.26(15) μs

| IT

| 127Sn

| (23/2+)

|

|

|-id=Tin-127m4

| style="text-indent:1em" | 127m4Sn

| colspan="3" style="text-indent:2em" | 2552.4(10) keV

| 250 (30) ns

| IT

| 127Sn

| (27/2−)

|

|

|-id=Tin-128

| 128Sn

| style="text-align:right" | 50

| style="text-align:right" | 78

|127.910508(19)

| 59.07(14) min

| β

| 128Sb

| 0+

|

|

|-id=Tin-128m1

| style="text-indent:1em" | 128m1Sn

| colspan="3" style="text-indent:2em" | 2091.50(11) keV

| 6.5(5) s

| IT

| 128Sn

| 7−

|

|

|-id=Tin-128m2

| style="text-indent:1em" | 128m2Sn

| colspan="3" style="text-indent:2em" | 2491.91(17) keV

| 2.91(14) μs

| IT

| 128Sn

| 10+

|

|

|-id=Tin-128m3

| style="text-indent:1em" | 128m3Sn

| colspan="3" style="text-indent:2em" | 4099.5(4) keV

| 220(30) ns

| IT

| 128Sn

| (15−)

|

|

|-id=Tin-129

| 129Sn

| style="text-align:right" | 50

| style="text-align:right" | 79

| 128.913482(19)

| 2.23(4) min

| β

| 129Sb

| 3/2+

|

|

|-id=Tin-129m1

| style="text-indent:1em" | 129m1Sn

| colspan="3" style="text-indent:2em" | 35.15(5) keV

| 6.9(1) min

| β

| 129Sb

| 11/2−

|

|

|-id=Tin-129m2

| style="text-indent:1em" | 129m2Sn

| colspan="3" style="text-indent:2em" | 1761.6(10) keV

| 3.49(11) μs

| IT

| 129Sn

| (19/2+)

|

|

|-id=Tin-129m3

| style="text-indent:1em" | 129m3Sn

| colspan="3" style="text-indent:2em" | 1802.6(10) keV

| 2.22(13) μs

| IT

| 129Sn

| 23/2+

|

|

|-id=Tin-129m4

| style="text-indent:1em" | 129m4Sn

| colspan="3" style="text-indent:2em" | 2552.9(11) keV

| 221(18) ns

| IT

| 129Sn

| (27/2−)

|

|

|-id=Tin-130

| 130Sn

| style="text-align:right" | 50

| style="text-align:right" | 80

|129.9139745(20)

| 3.72(7) min

| β

| 130Sb

| 0+

|

|

|-id=Tin-130m1

| style="text-indent:1em" | 130m1Sn

| colspan="3" style="text-indent:2em" | 1946.88(10) keV

| 1.7(1) min

| β

| 130Sb

| 7−

|

|

|-id=Tin-130m2

| style="text-indent:1em" | 130m2Sn

| colspan="3" style="text-indent:2em" | 2434.79(12) keV

| 1.501(17) μs

| IT

| 130Sn

| (10+)

|

|

|-id=Tin-131

| 131Sn

| style="text-align:right" | 50

| style="text-align:right" | 81

| 130.917053(4)

| 56.0(5) s

| β

| 131Sb

| 3/2+

|

|

|-id=Tin-131m1

| rowspan=2 style="text-indent:1em" | 131m1Sn

| rowspan=2 colspan="3" style="text-indent:2em" | 65.1(3) keV

| rowspan=2|58.4(5) s

| β

| 131Sb

| rowspan=2|11/2−

| rowspan=2|

| rowspan=2|

|-

| IT?

| 131Sn

|-id=Tin-131m2

| style="text-indent:1em" | 131m2Sn

| colspan="3" style="text-indent:2em" | 4670.0(4) keV

| 316(5) ns

| IT

| 131Sn

| (23/2−)

|

|

|-id=Tin-132

| 132Sn

| style="text-align:right" | 50

| style="text-align:right" | 82

| 131.9178239(21)

| 39.7(8) s

| β

| 132Sb

| 0+

|

|

|-id=Tin-132m

| style="text-indent:1em" | 132mSn

| colspan="3" style="text-indent:2em" | 4848.52(20) keV

| 2.080(16) μs

| IT

| 132Sn

| 8+

|

|

|-id=Tin-133

| rowspan=2|133Sn

| rowspan=2 style="text-align:right" | 50

| rowspan=2 style="text-align:right" | 83

| rowspan=2|132.9239138(20)

| rowspan=2|1.37(7) s

| β (99.97%)

| 133Sb

| rowspan=2|7/2−

| rowspan=2|

| rowspan=2|

|-

| βn (.0294%)

| 132Sb

|-id=Tin-134

| rowspan=2|134Sn

| rowspan=2 style="text-align:right" | 50

| rowspan=2 style="text-align:right" | 84

| rowspan=2| 133.928680(3)

| rowspan=2| 0.93(8) s

| β (83%)

| 134Sb

| rowspan=2|0+

| rowspan=2|

| rowspan=2|

|-

| βn (17%)

| 133Sb

|-id=Tin-134m

| style="text-indent:1em" | 134mSn

| colspan="3" style="text-indent:2em" | 1247.4(5) keV

| 87(8) ns

| IT

| 134Sn

| 6+

|

|

|-id=Tin-135

| rowspan=3|135Sn

| rowspan=3 style="text-align:right" | 50

| rowspan=3 style="text-align:right" | 85

| rowspan=3| 134.934909(3)

| rowspan=3|515(5) ms

| β (79%)

| 135Sb

| rowspan=3|7/2−#

| rowspan=3|

| rowspan=3|

|-

| βn (21%)

| 134Sb

|-

| β2n?

| 133Sb

|-id=Tin-136

| rowspan=3|136Sn

| rowspan=3 style="text-align:right" | 50

| rowspan=3 style="text-align:right" | 86

| rowspan=3| 135.93970(22)#

| rowspan=3|355(18) ms

| β (72%)

| 136Sb

| rowspan=3|0+

| rowspan=3|

| rowspan=3|

|-

| βn (28%)

| 135Sb

|-

| β2n?

| 134Sb

|-id=Tin-137

| rowspan=3|137Sn

| rowspan=3 style="text-align:right" | 50

| rowspan=3 style="text-align:right" | 87

| rowspan=3|136.94616(32)#

| rowspan=3|249(15) ms

| β (52%)

| 137Sb

| rowspan=3|5/2−#

| rowspan=3|

| rowspan=3|

|-

| βn (48%)

| 136Sb

|-

| β2n?

| 135Sb

|-id=Tin-138

| rowspan=3|138Sn

| rowspan=3 style="text-align:right" | 50

| rowspan=3 style="text-align:right" | 88

| rowspan=3|137.95114(43)#

| rowspan=3|148(9) ms

| β (64%)

| 138Sb

| rowspan=3|0+

| rowspan=3|

| rowspan=3|

|-

| βn (36%)

| 137Sb

|-

| β2n?

| 136Sb

|-id=Tin-138m

| style="text-indent:1em" | 138mSn

| colspan="3" style="text-indent:2em" | 1344(2) keV

| 210(45) ns

| IT

| 138Sn

| (6+)

|

|

|-id=Tin-139

| rowspan=3|139Sn

| rowspan=3 style="text-align:right" | 50

| rowspan=3 style="text-align:right" | 89

| rowspan=3|138.95780(43)#

| rowspan=3|120(38) ms

| β

| 139Sb

| rowspan=3|5/2−#

| rowspan=3|

| rowspan=3|

|-

| βn?

| 138Sb

|-

| β2n?

| 137Sb

|-id=Tin-140

|rowspan=3| 140Sn

|rowspan=3 style="text-align:right" | 50

|rowspan=3 style="text-align:right" | 90

|rowspan=3| 139.96297(32)#

|rowspan=3| 50# ms
[>550 ns]

?

|140Sb

|rowspan=3|0+

|rowspan=3|

|rowspan=3|

|-

n?

|139Sb

|-

2n?

|138Sb

{{Isotopes table/footer}}

Tin-117m

Tin-117m is a radioisotope of tin. One of its uses is in a particulate suspension to treat canine synovitis (radiosynoviorthesis).{{Cite web |title=Procedure for Use of Synovetin OA |url=https://www.nrc.gov/docs/ML2017/ML20178A657.pdf|work=nrc.gov }}

Tin-121m

Tin-121m (121mSn) is a radioisotope and nuclear isomer of tin with a half-life of 43.9 years.

In a normal thermal reactor, it has a very low fission product yield; thus, this isotope is not a significant contributor to nuclear waste. Fast fission or fission of some heavier actinides will produce tin-121 at higher yields. For example, its yield from uranium-235 is 0.0007% per thermal fission and 0.002% per fast fission.M. B. Chadwick et al, "Evaluated Nuclear Data File (ENDF) : ENDF/B-VII.1: Nuclear Data for Science and Technology: Cross Sections, Covariances, Fission Product Yields, and Decay Data", Nucl. Data Sheets 112(2011)2887. (accessed at https://www-nds.iaea.org/exfor/endf.htm)

Tin-126

{{Chain yield| 0.0481 ± 0.0077| 0.87 ± 0.20

| 0.224 ± 0.018| 0.278 ± 0.022 | 1.92 ± 0.31

| 0.056 ± 0.004| 0.0137 ± 0.001 | 1.70 ± 0.14

| 0.054 ± 0.004| 1.31 ± 0.21

| 0.199 ± 0.016| 0.26 ± 0.02 | 2.02 ± 0.22

| 0.082 ± 0.019| 0.22 ± 0.03 | ?

|data_ref=

}}

Tin-126 is a radioisotope of tin and one of the only seven long-lived fission products of uranium and plutonium. While tin-126's half-life of 230,000 years translates to a low specific activity of gamma radiation, its short-lived decay products, two isomers of antimony-126, emit a cascade of hard gamma radiation - at least 3 photons over 400 keV per decay - before reaching stable tellurium-126, making external exposure to tin-126 a potential concern.

Tin-126 is in the middle of the mass range for fission products. Thermal reactors, which make up almost all current nuclear power plants, produce it at only low yield, since slow neutrons almost always fission 235U or 239Pu into unequal halves. Fast fission in a fast reactor or nuclear weapon, or fission of some heavy minor actinides such as californium, will produce it at higher yields.

  • [https://web.archive.org/web/20091229041655/http://www.ead.anl.gov/pub/doc/tin.pdf ANL factsheet]

{{Clear}}

See also

References

{{Reflist}}

  • Isotope masses from:
  • {{NUBASE 2003}}
  • Isotopic compositions and standard atomic masses from:
  • {{CIAAW2003}}
  • {{CIAAW 2005}}
  • Half-life, spin, and isomer data selected from:
  • {{NUBASE 2003}}
  • {{NuDat 2}}
  • {{CRC85|chapter=11}}

{{Navbox element isotopes}}

Category:Tin

Tin