Jackson q-Bessel function

{{DISPLAYTITLE:Jackson q-Bessel function}}

In mathematics, a Jackson q-Bessel function (or basic Bessel function) is one of the three q-analogs of the Bessel function introduced by {{harvs|txt|authorlink=F. H. Jackson |last=Jackson|year1=1906a|year2=1906b|year3=1905a|year4=1905b}}. The third Jackson q-Bessel function is the same as the Hahn–Exton q-Bessel function.

Definition

The three Jackson q-Bessel functions are given in terms of the q-Pochhammer symbol and the basic hypergeometric function \phi by

: J_\nu^{(1)}(x;q) = \frac{(q^{\nu+1};q)_\infty}{(q;q)_\infty} (x/2)^\nu {}_2\phi_1(0,0;q^{\nu+1};q,-x^2/4), \quad |x|<2,

: J_\nu^{(2)}(x;q) = \frac{(q^{\nu+1};q)_\infty}{(q;q)_\infty} (x/2)^\nu {}_0\phi_1(;q^{\nu+1};q,-x^2q^{\nu +1}/4), \quad x\in\mathbb{C},

: J_\nu^{(3)}(x;q) = \frac{(q^{\nu+1};q)_\infty}{(q;q)_\infty} (x/2)^\nu {}_1\phi_1(0;q^{\nu+1};q,qx^2/4), \quad x\in\mathbb{C}.

They can be reduced to the Bessel function by the continuous limit:

:\lim_{q\to1}J_\nu^{(k)}(x(1-q);q)=J_\nu(x), \ k=1,2,3.

There is a connection formula between the first and second Jackson q-Bessel function ({{harvtxt|Gasper|Rahman|2004}}):

:J_\nu^{(2)}(x;q)=(-x^2/4;q)_\infty J_\nu^{(1)}(x;q), \ |x|<2.

For integer order, the q-Bessel functions satisfy

:J_n^{(k)}(-x;q)=(-1)^n J_n^{(k)}(x;q), \ n\in\mathbb{Z}, \ k=1,2,3.

Properties

=Negative Integer Order=

By using the relations ({{harvtxt|Gasper|Rahman|2004}}):

:(q^{m+1};q)_\infty=(q^{m+n+1};q)_\infty (q^{m+1};q)_n,

:(q;q)_{m+n}=(q;q)_m (q^{m+1};q)_n,\ m,n\in\mathbb{Z},

we obtain

:J_{-n}^{(k)}(x;q)=(-1)^n J_n^{(k)}(x;q), \ k=1,2.

=Zeros=

Hahn mentioned that J_\nu^{(2)}(x;q) has infinitely many real zeros ({{harvs|txt|authorlink=Wolfgang Hahn|last=Hahn|year=1949}}). Ismail proved that for \nu>-1 all non-zero roots of J_\nu^{(2)}(x;q) are real ({{harvs|txt|authorlink=Mourad E. H. Ismail|last=Ismail|year=1982}}).

=Ratio of ''q''-Bessel Functions=

The function -ix^{-1/2}J_{\nu+1}^{(2)}(ix^{1/2};q)/J_{\nu}^{(2)}(ix^{1/2};q) is a completely monotonic function ({{harvs|txt|authorlink=Mourad E. H. Ismail|last=Ismail|year=1982}}).

=Recurrence Relations=

The first and second Jackson q-Bessel function have the following recurrence relations (see {{harvtxt|Ismail|1982}} and {{harvtxt|Gasper|Rahman|2004}}):

:q^\nu J_{\nu+1}^{(k)}(x;q)=\frac{2(1-q^\nu)}{x}J_\nu^{(k)}(x;q)-J_{\nu-1}^{(k)}(x;q), \ k=1,2.

:J_{\nu}^{(1)}(x\sqrt{q};q)=q^{\pm\nu/2}\left(J_\nu^{(1)}(x;q)\pm \frac{x}{2}J_{\nu\pm1}^{(1)}(x;q)\right).

=Inequalities=

When \nu>-1, the second Jackson q-Bessel function satisfies:

\left|J_{\nu}^{(2)}(z;q)\right|\leq\frac{(-\sqrt{q};q)_{\infty}}{(q;q)_{\infty}}\left(\frac

z
{2}\right)^\nu\exp\left\{\frac{\log\left(|z|^2q^\nu/4\right)}{2\log q}\right\}.

(see {{harvs|txt|last=Zhang|year=2006}}.)

For n\in\mathbb{Z},

\left|J_{n}^{(2)}(z;q)\right|\leq\frac{(-q^{n+1};q)_{\infty}}{(q;q)_{\infty}}\left(\frac

z
{2}\right)^n(-|z|^2;q)_{\infty}.

(see {{harvs|txt|last=Koelink|year=1993}}.)

=Generating Function=

The following formulas are the q-analog of the generating function for the Bessel function (see {{harvtxt|Gasper|Rahman|2004}}):

:\sum_{n=-\infty}^{\infty}t^nJ_n^{(2)}(x;q)=(-x^2/4;q)_{\infty}e_q(xt/2)e_q(-x/2t),

:\sum_{n=-\infty}^{\infty}t^nJ_n^{(3)}(x;q)=e_q(xt/2)E_q(-qx/2t).

e_q is the q-exponential function.

Alternative Representations

=Integral Representations=

The second Jackson q-Bessel function has the following integral representations (see {{harvtxt|Rahman|1987}} and {{harvtxt|Ismail|Zhang|2018a}}):

:

J_{\nu}^{(2)}(x;q)=\frac{(q^{2\nu};q)_{\infty}}{2\pi(q^{\nu};q)_{\infty}}(x/2)^{\nu}

\cdot\int_0^{\pi} \frac{\left(e^{2i\theta}, e^{-2i\theta},-\frac{i x q^{(\nu+1)/2}}{2}e^{i\theta}, -\frac{i x q^{(\nu+1)/2}}{2}e^{-i\theta};q\right)_{\infty}}{(e^{2i\theta}q^{\nu}, e^{-2i\theta}q^{\nu};q)_{\infty}}\,d\theta,

:

(a_1,a_2,\cdots,a_n;q)_{\infty}:=(a_1;q)_{\infty}(a_2;q)_{\infty}\cdots(a_n;q)_{\infty}, \ \Re \nu>0,

where (a;q)_{\infty} is the q-Pochhammer symbol. This representation reduces to the integral representation of the Bessel function in the limit q\to 1.

:

J_{\nu}^{(2)}(z;q)=\frac{(z/2)^\nu}{\sqrt{2\pi\log q^{-1}}}\int_{-\infty}^{\infty}\frac{\left(\frac{q^{\nu+1/2}z^2e^{ix}}{4};q\right)_{\infty}\exp\left(\frac{x^2}{\log q^2}\right)}{(q,-q^{\nu+1/2}e^{ix};q)_{\infty}}\,dx.

=Hypergeometric Representations=

The second Jackson q-Bessel function has the following hypergeometric representations (see {{harvs|txt|last=Koelink|year=1993}}, {{harvs|txt|last1=Chen|authorlink2=Mourad Ismail|last2=Ismail|last3=Muttalib|year=1994}}):

:

J_{\nu}^{(2)}(x;q)=\frac{(x/2)^{\nu}}{(q;q)_{\infty}}\ _1\phi_1(-x^2/4;0;q,q^{\nu+1}),

:

J_{\nu}^{(2)}(x;q)=\frac{(x/2)^{\nu}(\sqrt{q};q)_{\infty}}{2(q;q)_{\infty}}[f(x/2,q^{(\nu+1/2)/2};q)+f(-x/2,q^{(\nu+1/2)/2};q)], \ f(x,a;q):=(iax;\sqrt{q})_\infty \ _3\phi_2 \left(\begin{matrix}

a, & -a, & 0 \\

-\sqrt{q}, & iax \end{matrix}

; \sqrt{q},\sqrt{q} \right).

An asymptotic expansion can be obtained as an immediate consequence of the second formula.

For other hypergeometric representations, see {{harvtxt|Rahman|1987}}.

Modified ''q''-Bessel Functions

The q-analog of the modified Bessel functions are defined with the Jackson q-Bessel function ({{harvtxt|Ismail|1981}} and {{harvtxt|Olshanetsky|Rogov|1995}}):

:I_\nu^{(j)}(x;q)=e^{i\nu\pi/2}J_{\nu}^{(j)}(x;q), \ j=1,2.

:K_\nu^{(j)}(x;q)=\frac{\pi}{2\sin(\pi\nu)}\left\{I_{-\nu}^{(j)}(x;q)-I_\nu^{(j)}(x;q)\right\}, \ j=1,2,\ \nu\in\mathbb{C}-\mathbb{Z},

:K_n^{(j)}(x;q)=\lim_{\nu\to n}K_\nu^{(j)}(x;q),\ n\in\mathbb{Z}.

There is a connection formula between the modified q-Bessel functions:

:I_\nu^{(2)}(x;q)=(-x^2/4;q)_\infty I_\nu^{(1)}(x;q).

For statistical applications, see {{harvtxt|Kemp|1997}}.

=Recurrence Relations=

By the recurrence relation of Jackson q-Bessel functions and the definition of modified q-Bessel functions, the following recurrence relation can be obtained (K_\nu^{(j)}(x;q) also satisfies the same relation) ({{harvtxt|Ismail|1981}}):

:q^\nu I_{\nu+1}^{(j)}(x;q)=\frac{2}{z}(1-q^\nu)I_\nu^{(j)}(x;q)+I_{\nu-1}^{(j)}(x;q), \ j=1, 2.

For other recurrence relations, see {{harvtxt|Olshanetsky|Rogov|1995}}.

=Continued Fraction Representation=

The ratio of modified q-Bessel functions form a continued fraction ({{harvtxt|Ismail|1981}}):

:\frac{I_\nu^{(2)}(z;q)}{I_{\nu-1}^{(2)}(z;q)}=\cfrac{1}{2(1-q^\nu)/z+\cfrac{q^\nu}{2(1-q^{\nu+1})/z+\cfrac{q^{\nu+1}}{2(1-q^{\nu+2})/z+\ddots}}}.

=Alternative Representations=

==Hypergeometric Representations==

The function I_\nu^{(2)}(z;q) has the following representation ({{harvtxt|Ismail|Zhang|2018b}}):

:

I_\nu^{(2)}(z;q)=\frac{(z/2)^\nu}{(q,q)_{\infty}} {}_1\phi_1(z^2/4;0;q,q^{\nu+1}).

==Integral Representations==

The modified q-Bessel functions have the following integral representations ({{harvtxt|Ismail|1981}}):

:I_\nu^{(2)}(z;q)=\left(z^2/4;q\right)_\infty\left(\frac{1}{\pi}\int_0^\pi\frac{\cos\nu\theta\,d\theta}{\left(e^{i\theta}z/2;q\right)_\infty\left(e^{-i\theta}z/2;q\right)_\infty}-\frac{\sin\nu\pi}{\pi}\int_0^\infty\frac{e^{-\nu t}\,dt}{\left(-e^t z/2;q\right)_\infty\left(-e^{-t}z/2;q\right)_\infty}\right),

:K_\nu^{(1)}(z;q)=\frac{1}{2}\int_0^\infty\frac{e^{-\nu t}\,dt}{\left(-e^{t/2} z/2;q\right)_\infty\left(-e^{-t/2}z/2;q\right)_\infty},\ |\arg z|<\pi/2,

:K_\nu^{(1)}(z;q)=\int_0^\infty\frac{\cosh\nu \,dt}{\left(-e^{t/2} z/2;q\right)_\infty\left(-e^{-t/2}z/2;q\right)_\infty}.

See also

References

  • {{Citation |last1=Chen|first1=Yang| last2=Ismail | first2=Mourad E. H. |last3=Muttalib|first3=K.A. | title=Asymptotics of basic Bessel functions and q-Laguerre polynomials| year=1994 | journal=Journal of Computational and Applied Mathematics | volume=54 |issue=3| pages=263–272 | doi=10.1016/0377-0427(92)00128-v| doi-access=free }}
  • {{Citation | last1=Gasper | first1=G. | last2=Rahman | first2=M. | title=Basic hypergeometric series | publisher=Cambridge University Press | edition=2nd | series=Encyclopedia of Mathematics and its Applications | isbn=978-0-521-83357-8 | mr=2128719 | year=2004 | volume=96}}
  • {{Citation |last1=Hahn |first1=Wolfgang |authorlink=Wolfgang Hahn |title=Über Orthogonalpolynome, die q-Differenzengleichungen genügen |year=1949 |journal=Mathematische Nachrichten |issn=0025-584X |volume=2 |issue=1–2 |pages=4–34 |doi=10.1002/mana.19490020103 |mr=0030647}}
  • {{Citation |last1=Ismail |first1=Mourad E. H. |authorlink=Mourad E. H. Ismail |title=The Basic Bessel Functions and Polynomials |year=1981 |journal=SIAM Journal on Mathematical Analysis |volume=12 |issue=3 |pages=454–468 |doi=10.1137/0512038}}
  • {{Citation |last1=Ismail |first1=Mourad E. H. |authorlink=Mourad E. H. Ismail |title=The zeros of basic Bessel functions, the functions Jν+ax(x), and associated orthogonal polynomials |year=1982 |journal=Journal of Mathematical Analysis and Applications |issn=0022-247X |volume=86 |issue=1 |pages=1–19 |doi=10.1016/0022-247X(82)90248-7 |mr=649849|doi-access= }}
  • {{Citation |last1=Ismail |first1=M. E. H. |last2=Zhang|first2=R.|title=Integral and Series Representations of q-Polynomials and Functions: Part I |year=2018a |journal=Analysis and Applications|volume=16|issue=2 |pages=209–281 |arxiv=1604.08441| doi=10.1142/S0219530517500129|s2cid=119142457 }}
  • {{Citation |last1=Ismail |first1=M. E. H. |last2=Zhang|first2=R.|title=q-Bessel Functions and Rogers-Ramanujan Type Identities| year=2018b |journal=Proceedings of the American Mathematical Society |volume=146 |issue=9 |pages=3633–3646 |arxiv=1508.06861| doi=10.1090/proc/13078|s2cid=119721248 }}
  • {{Citation |last1=Jackson |first1=F. H. |title=I.—On generalized functions of Legendre and Bessel |year=1906a |journal=Transactions of the Royal Society of Edinburgh |volume=41 |issue=1 |pages=1–28| doi=10.1017/S0080456800080017}}
  • {{Citation |last1=Jackson |first1=F. H. |title=VI.—Theorems relating to a generalization of the Bessel function |year=1906b |journal=Transactions of the Royal Society of Edinburgh |volume=41 |issue=1 |pages=105–118 |doi=10.1017/S0080456800080078 |url=https://zenodo.org/record/1804446}}
  • {{Citation |last1=Jackson |first1=F. H. |title=XVII.—Theorems relating to a generalization of Bessel's function |jfm=36.0513.02 |year=1906c |journal=Transactions of the Royal Society of Edinburgh |volume=41 |issue=2 |pages=399–408 |doi=10.1017/s0080456800034475| url=https://zenodo.org/record/1428680}}
  • {{Citation |last1=Jackson |first1=F. H. |title=The Application of Basic Numbers to Bessel's and Legendre's Functions |doi=10.1112/plms/s2-2.1.192 |year=1905a |journal=Proceedings of the London Mathematical Society |series=2 |volume=2 |issue=1 |pages=192–220| url=https://zenodo.org/record/1433525}}
  • {{Citation |last1=Jackson |first1=F. H. |title=The Application of Basic Numbers to Bessel's and Legendre's Functions (Second paper) |doi=10.1112/plms/s2-3.1.1 |year=1905b |journal=Proceedings of the London Mathematical Society |series=2 |volume=3 |issue=1 |pages=1–23| url=https://zenodo.org/record/1447790}}
  • {{ Citation| doi =10.1007/978-1-4612-4140-9_27| s2cid= 124998083 | chapter=On Modified q-Bessel Functions and Some Statistical Applications | first= A. W. | last=Kemp|author-link=Adrienne W. Kemp|date= 1997 | title= Advances in Combinatorial Methods and Applications to Probability and Statistics | editor= N. Balakrishnan| pages= 451–463 | isbn= 978-1-4612-4140-9}}
  • {{Citation | last1=Koelink | first1=H. T. | title=Hansen-Lommel Orthogonality Relations for Jackson's q-Bessel Functions | year=1993 | journal= Journal of Mathematical Analysis and Applications | volume=175 | issue=2 | pages=425–437 | doi=10.1006/jmaa.1993.1181| doi-access=free }}
  • {{cite arXiv | last1=Olshanetsky |first1=M. A. |last2=Rogov |first2=V. B. |year=1995 |title=The Modified q-Bessel Functions and the q-Bessel-Macdonald Functions |arxiv=q-alg/9509013 |mode=cs2}}
  • {{Citation |last1=Rahman |first1=M. |authorlink=Mizan Rahman |title=An Integral Representation and Some Transformation Properties of q-Bessel Functions |year=1987 |journal=Journal of Mathematical Analysis and Applications |volume=125 |pages=58–71 |doi=10.1016/0022-247x(87)90164-8|doi-access= }}
  • {{cite arXiv |last1=Zhang|first1=R.|title=Plancherel-Rotach Asymptotics for q-Series | year=2006 |eprint=math/0612216 |mode=cs2}}

Category:Special functions

Category:Q-analogs