Jackson q-Bessel function
{{DISPLAYTITLE:Jackson q-Bessel function}}
In mathematics, a Jackson q-Bessel function (or basic Bessel function) is one of the three q-analogs of the Bessel function introduced by {{harvs|txt|authorlink=F. H. Jackson |last=Jackson|year1=1906a|year2=1906b|year3=1905a|year4=1905b}}. The third Jackson q-Bessel function is the same as the Hahn–Exton q-Bessel function.
Definition
The three Jackson q-Bessel functions are given in terms of the q-Pochhammer symbol and the basic hypergeometric function by
:
:
:
They can be reduced to the Bessel function by the continuous limit:
:
There is a connection formula between the first and second Jackson q-Bessel function ({{harvtxt|Gasper|Rahman|2004}}):
:
For integer order, the q-Bessel functions satisfy
:
Properties
=Negative Integer Order=
By using the relations ({{harvtxt|Gasper|Rahman|2004}}):
:
:
we obtain
:
=Zeros=
Hahn mentioned that has infinitely many real zeros ({{harvs|txt|authorlink=Wolfgang Hahn|last=Hahn|year=1949}}). Ismail proved that for all non-zero roots of are real ({{harvs|txt|authorlink=Mourad E. H. Ismail|last=Ismail|year=1982}}).
=Ratio of ''q''-Bessel Functions=
The function is a completely monotonic function ({{harvs|txt|authorlink=Mourad E. H. Ismail|last=Ismail|year=1982}}).
=Recurrence Relations=
The first and second Jackson q-Bessel function have the following recurrence relations (see {{harvtxt|Ismail|1982}} and {{harvtxt|Gasper|Rahman|2004}}):
:
:
=Inequalities=
When , the second Jackson q-Bessel function satisfies:
\left|J_{\nu}^{(2)}(z;q)\right|\leq\frac{(-\sqrt{q};q)_{\infty}}{(q;q)_{\infty}}\left(\frac
z |
(see {{harvs|txt|last=Zhang|year=2006}}.)
For ,
\left|J_{n}^{(2)}(z;q)\right|\leq\frac{(-q^{n+1};q)_{\infty}}{(q;q)_{\infty}}\left(\frac
z |
(see {{harvs|txt|last=Koelink|year=1993}}.)
=Generating Function=
The following formulas are the q-analog of the generating function for the Bessel function (see {{harvtxt|Gasper|Rahman|2004}}):
:
:
is the q-exponential function.
Alternative Representations
=Integral Representations=
The second Jackson q-Bessel function has the following integral representations (see {{harvtxt|Rahman|1987}} and {{harvtxt|Ismail|Zhang|2018a}}):
:
J_{\nu}^{(2)}(x;q)=\frac{(q^{2\nu};q)_{\infty}}{2\pi(q^{\nu};q)_{\infty}}(x/2)^{\nu}
\cdot\int_0^{\pi} \frac{\left(e^{2i\theta}, e^{-2i\theta},-\frac{i x q^{(\nu+1)/2}}{2}e^{i\theta}, -\frac{i x q^{(\nu+1)/2}}{2}e^{-i\theta};q\right)_{\infty}}{(e^{2i\theta}q^{\nu}, e^{-2i\theta}q^{\nu};q)_{\infty}}\,d\theta,
:
(a_1,a_2,\cdots,a_n;q)_{\infty}:=(a_1;q)_{\infty}(a_2;q)_{\infty}\cdots(a_n;q)_{\infty}, \ \Re \nu>0,
where is the q-Pochhammer symbol. This representation reduces to the integral representation of the Bessel function in the limit .
:
J_{\nu}^{(2)}(z;q)=\frac{(z/2)^\nu}{\sqrt{2\pi\log q^{-1}}}\int_{-\infty}^{\infty}\frac{\left(\frac{q^{\nu+1/2}z^2e^{ix}}{4};q\right)_{\infty}\exp\left(\frac{x^2}{\log q^2}\right)}{(q,-q^{\nu+1/2}e^{ix};q)_{\infty}}\,dx.
=Hypergeometric Representations=
The second Jackson q-Bessel function has the following hypergeometric representations (see {{harvs|txt|last=Koelink|year=1993}}, {{harvs|txt|last1=Chen|authorlink2=Mourad Ismail|last2=Ismail|last3=Muttalib|year=1994}}):
:
J_{\nu}^{(2)}(x;q)=\frac{(x/2)^{\nu}}{(q;q)_{\infty}}\ _1\phi_1(-x^2/4;0;q,q^{\nu+1}),
:
J_{\nu}^{(2)}(x;q)=\frac{(x/2)^{\nu}(\sqrt{q};q)_{\infty}}{2(q;q)_{\infty}}[f(x/2,q^{(\nu+1/2)/2};q)+f(-x/2,q^{(\nu+1/2)/2};q)], \ f(x,a;q):=(iax;\sqrt{q})_\infty \ _3\phi_2 \left(\begin{matrix}
a, & -a, & 0 \\
-\sqrt{q}, & iax \end{matrix}
; \sqrt{q},\sqrt{q} \right).
An asymptotic expansion can be obtained as an immediate consequence of the second formula.
For other hypergeometric representations, see {{harvtxt|Rahman|1987}}.
Modified ''q''-Bessel Functions
The q-analog of the modified Bessel functions are defined with the Jackson q-Bessel function ({{harvtxt|Ismail|1981}} and {{harvtxt|Olshanetsky|Rogov|1995}}):
:
:
:
There is a connection formula between the modified q-Bessel functions:
:
For statistical applications, see {{harvtxt|Kemp|1997}}.
=Recurrence Relations=
By the recurrence relation of Jackson q-Bessel functions and the definition of modified q-Bessel functions, the following recurrence relation can be obtained ( also satisfies the same relation) ({{harvtxt|Ismail|1981}}):
:
For other recurrence relations, see {{harvtxt|Olshanetsky|Rogov|1995}}.
=Continued Fraction Representation=
The ratio of modified q-Bessel functions form a continued fraction ({{harvtxt|Ismail|1981}}):
:
=Alternative Representations=
==Hypergeometric Representations==
The function has the following representation ({{harvtxt|Ismail|Zhang|2018b}}):
:
I_\nu^{(2)}(z;q)=\frac{(z/2)^\nu}{(q,q)_{\infty}} {}_1\phi_1(z^2/4;0;q,q^{\nu+1}).
==Integral Representations==
The modified q-Bessel functions have the following integral representations ({{harvtxt|Ismail|1981}}):
:
:
:
See also
References
- {{Citation |last1=Chen|first1=Yang| last2=Ismail | first2=Mourad E. H. |last3=Muttalib|first3=K.A. | title=Asymptotics of basic Bessel functions and q-Laguerre polynomials| year=1994 | journal=Journal of Computational and Applied Mathematics | volume=54 |issue=3| pages=263–272 | doi=10.1016/0377-0427(92)00128-v| doi-access=free }}
- {{Citation | last1=Gasper | first1=G. | last2=Rahman | first2=M. | title=Basic hypergeometric series | publisher=Cambridge University Press | edition=2nd | series=Encyclopedia of Mathematics and its Applications | isbn=978-0-521-83357-8 | mr=2128719 | year=2004 | volume=96}}
- {{Citation |last1=Hahn |first1=Wolfgang |authorlink=Wolfgang Hahn |title=Über Orthogonalpolynome, die q-Differenzengleichungen genügen |year=1949 |journal=Mathematische Nachrichten |issn=0025-584X |volume=2 |issue=1–2 |pages=4–34 |doi=10.1002/mana.19490020103 |mr=0030647}}
- {{Citation |last1=Ismail |first1=Mourad E. H. |authorlink=Mourad E. H. Ismail |title=The Basic Bessel Functions and Polynomials |year=1981 |journal=SIAM Journal on Mathematical Analysis |volume=12 |issue=3 |pages=454–468 |doi=10.1137/0512038}}
- {{Citation |last1=Ismail |first1=Mourad E. H. |authorlink=Mourad E. H. Ismail |title=The zeros of basic Bessel functions, the functions Jν+ax(x), and associated orthogonal polynomials |year=1982 |journal=Journal of Mathematical Analysis and Applications |issn=0022-247X |volume=86 |issue=1 |pages=1–19 |doi=10.1016/0022-247X(82)90248-7 |mr=649849|doi-access= }}
- {{Citation |last1=Ismail |first1=M. E. H. |last2=Zhang|first2=R.|title=Integral and Series Representations of q-Polynomials and Functions: Part I |year=2018a |journal=Analysis and Applications|volume=16|issue=2 |pages=209–281 |arxiv=1604.08441| doi=10.1142/S0219530517500129|s2cid=119142457 }}
- {{Citation |last1=Ismail |first1=M. E. H. |last2=Zhang|first2=R.|title=q-Bessel Functions and Rogers-Ramanujan Type Identities| year=2018b |journal=Proceedings of the American Mathematical Society |volume=146 |issue=9 |pages=3633–3646 |arxiv=1508.06861| doi=10.1090/proc/13078|s2cid=119721248 }}
- {{Citation |last1=Jackson |first1=F. H. |title=I.—On generalized functions of Legendre and Bessel |year=1906a |journal=Transactions of the Royal Society of Edinburgh |volume=41 |issue=1 |pages=1–28| doi=10.1017/S0080456800080017}}
- {{Citation |last1=Jackson |first1=F. H. |title=VI.—Theorems relating to a generalization of the Bessel function |year=1906b |journal=Transactions of the Royal Society of Edinburgh |volume=41 |issue=1 |pages=105–118 |doi=10.1017/S0080456800080078 |url=https://zenodo.org/record/1804446}}
- {{Citation |last1=Jackson |first1=F. H. |title=XVII.—Theorems relating to a generalization of Bessel's function |jfm=36.0513.02 |year=1906c |journal=Transactions of the Royal Society of Edinburgh |volume=41 |issue=2 |pages=399–408 |doi=10.1017/s0080456800034475| url=https://zenodo.org/record/1428680}}
- {{Citation |last1=Jackson |first1=F. H. |title=The Application of Basic Numbers to Bessel's and Legendre's Functions |doi=10.1112/plms/s2-2.1.192 |year=1905a |journal=Proceedings of the London Mathematical Society |series=2 |volume=2 |issue=1 |pages=192–220| url=https://zenodo.org/record/1433525}}
- {{Citation |last1=Jackson |first1=F. H. |title=The Application of Basic Numbers to Bessel's and Legendre's Functions (Second paper) |doi=10.1112/plms/s2-3.1.1 |year=1905b |journal=Proceedings of the London Mathematical Society |series=2 |volume=3 |issue=1 |pages=1–23| url=https://zenodo.org/record/1447790}}
- {{ Citation| doi =10.1007/978-1-4612-4140-9_27| s2cid= 124998083 | chapter=On Modified q-Bessel Functions and Some Statistical Applications | first= A. W. | last=Kemp|author-link=Adrienne W. Kemp|date= 1997 | title= Advances in Combinatorial Methods and Applications to Probability and Statistics | editor= N. Balakrishnan| pages= 451–463 | isbn= 978-1-4612-4140-9}}
- {{Citation | last1=Koelink | first1=H. T. | title=Hansen-Lommel Orthogonality Relations for Jackson's q-Bessel Functions | year=1993 | journal= Journal of Mathematical Analysis and Applications | volume=175 | issue=2 | pages=425–437 | doi=10.1006/jmaa.1993.1181| doi-access=free }}
- {{cite arXiv | last1=Olshanetsky |first1=M. A. |last2=Rogov |first2=V. B. |year=1995 |title=The Modified q-Bessel Functions and the q-Bessel-Macdonald Functions |arxiv=q-alg/9509013 |mode=cs2}}
- {{Citation |last1=Rahman |first1=M. |authorlink=Mizan Rahman |title=An Integral Representation and Some Transformation Properties of q-Bessel Functions |year=1987 |journal=Journal of Mathematical Analysis and Applications |volume=125 |pages=58–71 |doi=10.1016/0022-247x(87)90164-8|doi-access= }}
- {{cite arXiv |last1=Zhang|first1=R.|title=Plancherel-Rotach Asymptotics for q-Series | year=2006 |eprint=math/0612216 |mode=cs2}}