q-exponential
{{DISPLAYTITLE:q-exponential}}
The term q-exponential occurs in two contexts. The q-exponential distribution, based on the Tsallis q-exponential is discussed in elsewhere.
In combinatorial mathematics, a q-exponential is a q-analog of the exponential function,
namely the eigenfunction of a q-derivative. There are many q-derivatives, for example, the classical q-derivative, the Askey–Wilson operator, etc. Therefore, unlike the classical exponentials, q-exponentials are not unique. For example, is the q-exponential corresponding to the classical q-derivative while are eigenfunctions of the Askey–Wilson operators.
The q-exponential is also known as the quantum dilogarithm.{{Cite web|last=Zudilin|first=Wadim|date=14 March 2006|title=Quantum dilogarithm|url=https://wain.mi.ras.ru/PS/mpim-mar2006.pdf|access-date=16 July 2021|website=wain.mi.ras.ru}}{{Cite journal|last1=Faddeev|first1=L.d.|last2=Kashaev|first2=R.m.|date=1994-02-20|title=Quantum dilogarithm|url=https://www.worldscientific.com/doi/abs/10.1142/S0217732394000447|journal=Modern Physics Letters A|volume=09|issue=5|pages=427–434|doi=10.1142/S0217732394000447|issn=0217-7323|arxiv=hep-th/9310070|bibcode=1994MPLA....9..427F|s2cid=119124642}}
Definition
The q-exponential is defined as
:
\sum_{n=0}^\infty \frac{z^n}{[n]!_q} =
\sum_{n=0}^\infty \frac{z^n (1-q)^n}{(q;q)_n} =
\sum_{n=0}^\infty z^n\frac{(1-q)^n}{(1-q^n)(1-q^{n-1}) \cdots (1-q)}
where is the q-factorial and
:
is the q-Pochhammer symbol. That this is the q-analog of the exponential follows from the property
:
where the derivative on the left is the q-derivative. The above is easily verified by considering the q-derivative of the monomial
:
=[n]_q z^{n-1}.
Here, is the q-bracket.
For other definitions of the q-exponential function, see {{harvtxt|Exton|1983}}, {{harvtxt|Ismail|Zhang|1994}}, and {{harvtxt|Cieśliński|2011}}.
Properties
For real , the function is an entire function of . For , is regular in the disk .
Note the inverse, .
=Addition Formula=
The analogue of does not hold for real numbers and . However, if these are operators satisfying the commutation relation , then holds true.{{cite book |last1=Kac |first1=V. |last2=Cheung |first2=P. |title=Quantum Calculus |date=2011 |publisher=Springer |isbn=978-1461300724 |page=31 |ref=KacCheung}}
Relations
For
:
Clearly,
:
(-z)^{n}=e^{-z} .~
=Relation with Dilogarithm=
:
On the other hand,
When
:
\log e_q(x) &= -\sum_{k=0}^\infty\log(1-q^k(1-q)x) \\
&= \sum_{k=0}^\infty\sum_{n=1}^\infty\frac{(q^k(1-q)x)^n}{n} \\
&= \sum_{n=1}^\infty\frac{((1-q)x)^n}{(1-q^n)n} \\
&= \frac{1}{1-q}\sum_{n=1}^\infty\frac{((1-q)x)^n}{[n]_qn}
\end{align}.
By taking the limit
:
where
References
{{Reflist}}
- {{cite journal
| last1=Cieśliński | first1=Jan L. | authorlink1=Jan L. Cieśliński
| date=2011
| title=Improved q-exponential and q-trigonometric functions
| journal=Applied Mathematics Letters
| volume=24
| issue=12
| pages=2110–2114
| doi=10.1016/j.aml.2011.06.009| s2cid=205496812 | doi-access=free
| arxiv=1006.5652
}}
- {{cite book
| last1=Exton | first1=Harold | authorlink1=Harold Exton
| date=1983
| title=q-Hypergeometric Functions and Applications
| publisher=New York: Halstead Press, Chichester: Ellis Horwood
| isbn=0853124914}}
- {{cite book
| last1=Gasper | first1=George | authorlink1=George Gasper
| last2=Rahman | first2=Mizan Rahman | authorlink2=Mizan Rahman
| date=2004
| title=Basic Hypergeometric Series
| publisher=Cambridge University Press
| isbn=0521833574}}
- {{cite book
| last1=Ismail | first1=Mourad E. H. | authorlink1=Mourad Ismail
| date=2005
| title=Classical and Quantum Orthogonal Polynomials in One Variable
| publisher=Cambridge University Press
| doi=10.1017/CBO9781107325982| isbn=9780521782012 }}
- {{cite journal
| last1=Ismail | first1=Mourad E. H. | authorlink1=Mourad Ismail
| last2=Zhang | first2=Ruiming | authorlink2=Ruiming Zhang
| date=1994
| title=Diagonalization of certain integral operators
| journal=Advances in Mathematics
| volume=108
| issue=1
| pages=1–33
| doi=10.1006/aima.1994.1077 | doi-access=free}}
- {{cite journal
| last1=Ismail | first1=Mourad E. H. | authorlink1=Mourad Ismail
| last2=Rahman | first2=Mizan | authorlink2=Mizan Rahman
| last3=Zhang | first3=Ruiming | authorlink3=Ruiming Zhang
| date=1996
| title=Diagonalization of certain integral operators II
| journal=Journal of Computational and Applied Mathematics
| volume=68
| issue=1–2
| pages=163–196
| doi=10.1016/0377-0427(95)00263-4 | doi-access=free| citeseerx=10.1.1.234.4251
}}
- {{cite journal
| last1=Jackson | first1=F. H. | authorlink1=F. H. Jackson
| date=1909
| title=On q-functions and a certain difference operator
| journal=Transactions of the Royal Society of Edinburgh
| volume=46
| issue=2
| pages=253–281
| doi=10.1017/S0080456800002751| s2cid=123927312 }}
{{DEFAULTSORT:Q-Exponential}}