Jacobi transform
In mathematics, Jacobi transform is an integral transform named after the mathematician Carl Gustav Jacob Jacobi, which uses Jacobi polynomials as kernels of the transform
.Debnath, L. "On Jacobi Transform." Bull. Cal. Math. Soc 55.3 (1963): 113-120.Debnath, L. "SOLUTION OF PARTIAL DIFFERENTIAL EQUATIONS BY JACOBI TRANSFORM." BULLETIN OF THE CALCUTTA MATHEMATICAL SOCIETY 59.3-4 (1967): 155.Scott, E. J. "Jacobi transforms." (1953).{{cite journal|last=Shen|first=Jie|last2=Wang|first2=Yingwei|last3=Xia|first3=Jianlin|date=2019|title=Fast structured Jacobi-Jacobi transforms|journal=Math. Comp.|volume=88|issue=318|pages=1743–1772|doi=10.1090/mcom/3377|doi-access=free}}
The Jacobi transform of a function isDebnath, Lokenath, and Dambaru Bhatta. Integral transforms and their applications. CRC press, 2014.
:
The inverse Jacobi transform is given by
:
\quad \delta_n =\frac{2^{\alpha+\beta+1} \Gamma(n+ \alpha+1) \Gamma(n+\beta+1)}{n! (\alpha+\beta+2n+1) \Gamma(n+ \alpha+\beta+1)}
Some Jacobi transform pairs
class="wikitable" align="center"
|+ Some Jacobi transform pairs ! scope="col" | ! scope="col" | |
| |
| |
| |
| |
| |
class="wikitable" align="center"
|+ Some more Jacobi transform pairs ! scope="col" | ! scope="col" | |
| |
| |
| |