Hurwitz zeta function
{{short description|Special function in mathematics}}
In mathematics, the Hurwitz zeta function is one of the many zeta functions. It is formally defined for complex variables {{mvar|s}} with {{math|Re(s) > 1}} and {{math|a ≠ 0, −1, −2, …}} by
:
This series is absolutely convergent for the given values of {{mvar|s}} and {{mvar|a}} and can be extended to a meromorphic function defined for all {{math|s ≠ 1}}. The Riemann zeta function is {{math|ζ(s,1)}}. The Hurwitz zeta function is named after Adolf Hurwitz, who introduced it in 1882.{{cite journal |first=Adolf |last=Hurwitz |author-link=Adolf Hurwitz |title=Einige Eigenschaften der Dirichlet'schen Functionen , die bei der Bestimmung der Classenanzahlen binärer quadratischer Formen auftreten |journal=Zeitschrift für Mathematik und Physik |volume=27 |pages=86–101 |lang=de |date=1882 |url=https://archive.org/details/zeitschriftfurm13unkngoog/page/n95}}
File:Hurwitza1ov3v2.png plot using a version of the Domain coloring method.{{Cite web|url=http://nbviewer.ipython.org/github/empet/Math/blob/master/DomainColoring.ipynb|title=Jupyter Notebook Viewer}}]]
Integral representation
The Hurwitz zeta function has an integral representation
:
for and (This integral can be viewed as a Mellin transform.) The formula can be obtained, roughly, by writing
:
= \sum_{n=0}^\infty \frac{1}{(n+a)^s} \int_0^\infty x^s e^{-x} \frac{dx}{x}
= \sum_{n=0}^\infty \int_0^\infty y^s e^{-(n+a)y} \frac{dy}{y}
and then interchanging the sum and integral.{{harvnb|Apostol|1976|p=251|loc=Theorem 12.2}}
The integral representation above can be converted to a contour integral representation
:
where is a Hankel contour counterclockwise around the positive real axis, and the principal branch is used for the complex exponentiation . Unlike the previous integral, this integral is valid for all s, and indeed is an entire function of s.{{harvnb|Whittaker|Watson|1927|p=266|loc=Section 13.13}}
The contour integral representation provides an analytic continuation of to all . At , it has a simple pole with residue .{{harvnb|Apostol|1976|p=255|loc=Theorem 12.4}}
Hurwitz's formula
The Hurwitz zeta function satisfies an identity which generalizes the functional equation of the Riemann zeta function:{{harvnb|Apostol|1976|p=257|loc=Theorem 12.6}}
:
valid for Re(s) > 1 and 0 < a ≤ 1. The Riemann zeta functional equation is the special case a = 1:{{harvnb|Apostol|1976|p=259|loc=Theorem 12.7}}
:
Hurwitz's formula can also be expressed as{{harvnb|Whittaker|Watson|1927|pp=268–269|loc=Section 13.15}}
:
(for Re(s) < 0 and 0 < a ≤ 1).
Hurwitz's formula has a variety of different proofs.See the references in Section 4 of: {{cite journal |first1= S. |last1= Kanemitsu |first2= Y. |last2= Tanigawa |first3= H. |last3= Tsukada |first4= M. |last4= Yoshimoto |title= Contributions to the theory of the Hurwitz zeta-function |journal= Hardy-Ramanujan Journal |volume= 30| date= 2007 |pages= 31–55 |doi= 10.46298/hrj.2007.159 |zbl= 1157.11036|doi-access= free }} One proof uses the contour integration representation along with the residue theorem. A second proof uses a theta function identity, or equivalently Poisson summation.{{cite journal |first=N. J. |last=Fine |author-link= Nathan Fine |title= Note on the Hurwitz Zeta-Function |journal= Proceedings of the American Mathematical Society |volume= 2 |number= 3 |date= June 1951 |pages= 361–364 |doi= 10.2307/2031757 |jstor=2031757 |doi-access=free |zbl= 0043.07802}} These proofs are analogous to the two proofs of the functional equation for the Riemann zeta function in Riemann's 1859 paper. Another proof of the Hurwitz formula uses Euler–Maclaurin summation to express the Hurwitz zeta function as an integral
:
(−1 < Re(s) < 0 and 0 < a ≤ 1) and then expanding the numerator as a Fourier series.{{cite journal |first= Bruce C. |last= Berndt |author-link= Bruce C. Berndt |title= On the Hurwitz zeta-function |journal= Rocky Mountain Journal of Mathematics |volume= 2 |number= 1 |date= Winter 1972 |pages= 151–158 |doi= 10.1216/RMJ-1972-2-1-151 |zbl= 0229.10023|doi-access= free }}
=Functional equation for rational ''a''=
When a is a rational number, Hurwitz's formula leads to the following functional equation: For integers ,
:
\frac{2\Gamma(s)}{ (2\pi n)^s }
\sum_{k=1}^n \left[\cos
\left( \frac {\pi s} {2} -\frac {2\pi k m} {n} \right)\;
\zeta \left( s,\frac {k}{n} \right)\right]
holds for all values of s.{{harvnb|Apostol|1976|p=261|loc=Theorem 12.8}}
This functional equation can be written as another equivalent form:
.
Some finite sums
Closely related to the functional equation are the following finite sums, some of which may be evaluated in a closed form
:
\sum_{r=1}^{m-1} \zeta\left(s,\frac{r}{m}\right)
\cos\dfrac{2\pi rk}{m} =\frac{m \Gamma(1-s)}{(2\pi m)^{1-s}}
\sin\frac{\pi s}{2} \cdot \left\{\zeta\left(1-s,\frac{k}{m}\right) +
\zeta\left(1-s,1-\frac{k}{m}\right) \right\} - \zeta(s)
:
\sum_{r=1}^{m-1} \zeta\left(s,\frac{r}{m}\right)
\sin\dfrac{2\pi rk}{m}= \frac{m \Gamma(1-s)}{(2\pi m)^{1-s}}
\cos \frac{\pi s}{2} \cdot \left\{\zeta\left(1-s,\frac{k}{m}\right) -
\zeta\left(1-s,1-\frac{k}{m}\right)\right\}
:
\sum_{r=1}^{m-1} \zeta^2\left(s,\frac{r}{m}\right) =
\big(m^{2s-1}-1 \big)\zeta^2(s) + \frac{2m\Gamma^2(1-s)}{(2\pi m)^{2-2s}}
\sum_{l=1}^{m-1} \left\{\zeta\left(1-s,\frac{l}{m}\right) - \cos\pi s
\cdot \zeta\left(1-s,1-\frac{l}{m}\right)\right\} \zeta\left(1-s,\frac{l}{m}\right)
where m is positive integer greater than 2 and s is complex, see e.g. Appendix B in.{{cite journal|doi=10.1016/j.jnt.2014.08.009 |first=I.V. |last=Blagouchine |title=A theorem for the closed-form evaluation of the first generalized Stieltjes constant at rational arguments and some related summations |journal=Journal of Number Theory |publisher=Elsevier |volume=148 |pages=537–592 |date=2014 |arxiv=1401.3724}}
Series representation
A convergent Newton series representation defined for (real) a > 0 and any complex s ≠ 1 was given by Helmut Hasse in 1930:{{Citation |first=Helmut |last=Hasse |title=Ein Summierungsverfahren für die Riemannsche ζ-Reihe |year=1930 |journal=Mathematische Zeitschrift |volume=32 |issue=1 |pages=458–464 |doi=10.1007/BF01194645 | jfm=56.0894.03 |s2cid=120392534 | url=https://eudml.org/doc/168238 }}
:
\sum_{n=0}^\infty \frac{1}{n+1}
\sum_{k=0}^n (-1)^k {n \choose k} (a+k)^{1-s}.
This series converges uniformly on compact subsets of the s-plane to an entire function. The inner sum may be understood to be the nth forward difference of ; that is,
:
where Δ is the forward difference operator. Thus, one may write:
:
\zeta(s, a) &= \frac{1}{s-1}\sum_{n=0}^\infty \frac{(-1)^n}{n+1} \Delta^n a^{1-s}\\
&= \frac{1}{s-1} {\log(1 + \Delta) \over \Delta} a^{1-s}
\end{align}
Taylor series
The partial derivative of the zeta in the second argument is a shift:
:
Thus, the Taylor series can be written as:
:
\frac {\partial^k} {\partial x^k} \zeta (s,x) =
\sum_{k=0}^\infty {s+k-1 \choose s-1} (-y)^k \zeta (s+k,x).
Alternatively,
:
Closely related is the Stark–Keiper formula:
:
\sum_{k=0}^\infty \left[ N+\frac {s-1}{k+1}\right]
{s+k-1 \choose s-1} (-1)^k \zeta (s+k,N)
which holds for integer N and arbitrary s. See also Faulhaber's formula for a similar relation on finite sums of powers of integers.
Laurent series
The Laurent series expansion can be used to define generalized Stieltjes constants that occur in the series
:
In particular, the constant term is given by
:
\gamma_0(a)=
\frac{-\Gamma'(a)}{\Gamma(a)} = -\psi(a)
where is the gamma function and is the digamma function. As a special case, .
Discrete Fourier transform
The discrete Fourier transform of the Hurwitz zeta function with respect to the order s is the Legendre chi function.{{cite journal |last=Jacek Klinowski |first=Djurdje Cvijović | title=Values of the Legendre chi and Hurwitz zeta functions at rational arguments |journal=Mathematics of Computation |volume=68 |date=1999|issue=228 |pages=1623–1631 |doi=10.1090/S0025-5718-99-01091-1|bibcode=1999MaCom..68.1623C |doi-access=free }}
Particular values
=Negative integers=
The values of ζ(s, a) at s = 0, −1, −2, ... are related to the Bernoulli polynomials:{{harvnb|Apostol|1976|p=264|loc=Theorem 12.13}}
:
For example, the case gives{{harvnb|Apostol|1976|p=268}}
:
=''s''-derivative=
The partial derivative with respect to s at s = 0 is related to the gamma function:
:
In particular, The formula is due to Lerch.{{cite journal |last=Berndt |first=Bruce C. |author-link=Bruce C. Berndt |title=The Gamma Function and the Hurwitz Zeta-Function |journal=The American Mathematical Monthly |volume=92 |number=2 |date=1985 |pages=126–130 |doi=10.2307/2322640|jstor=2322640 }}{{harvnb|Whittaker|Watson|1927|p=271|loc=Section 13.21}}
Relation to Jacobi theta function
If is the Jacobi theta function, then
:
\pi^{-(1-s)/2} \Gamma \left( \frac {1-s}{2} \right)
\left[ \zeta(1-s,z) + \zeta(1-s,1-z) \right]
holds for and z complex, but not an integer. For z=n an integer, this simplifies to
:
2\ \pi^{-(1-s)/2} \ \Gamma \left( \frac {1-s}{2} \right) \zeta(1-s)
=2\ \pi^{-s/2} \ \Gamma \left( \frac {s}{2} \right) \zeta(s).
where ζ here is the Riemann zeta function. Note that this latter form is the functional equation for the Riemann zeta function, as originally given by Riemann. The distinction based on z being an integer or not accounts for the fact that the Jacobi theta function converges to the periodic delta function, or Dirac comb in z as .
Relation to Dirichlet ''L''-functions
At rational arguments the Hurwitz zeta function may be expressed as a linear combination of Dirichlet L-functions and vice versa: The Hurwitz zeta function coincides with Riemann's zeta function ζ(s) when a = 1, when a = 1/2 it is equal to (2s−1)ζ(s), and if a = n/k with k > 2, (n,k) > 1 and 0 < n < k, then{{cite web|last=Lowry|first=David|title=Hurwitz Zeta is a sum of Dirichlet L functions, and vice-versa|url=http://mixedmath.wordpress.com/2013/02/08/hurwitz-zeta-is-a-sum-of-dirichlet-l-functions-and-vice-versa/|work=mixedmath|date=8 February 2013|access-date=8 February 2013}}
:
the sum running over all Dirichlet characters mod k. In the opposite direction we have the linear combination
:
There is also the multiplication theorem
:
of which a useful generalization is the distribution relation{{cite book | first1=Daniel S. | last1=Kubert | author-link1=Daniel Kubert | first2=Serge | last2=Lang | author-link2=Serge Lang | title=Modular Units | series= Grundlehren der Mathematischen Wissenschaften | volume=244 | publisher=Springer-Verlag | year=1981 | isbn=0-387-90517-0 | zbl=0492.12002 | page=13 }}
:
(This last form is valid whenever q a natural number and 1 − qa is not.)
Zeros
If a=1 the Hurwitz zeta function reduces to the Riemann zeta function itself; if a=1/2 it reduces to the Riemann zeta function multiplied by a simple function of the complex argument s (vide supra), leading in each case to the difficult study of the zeros of Riemann's zeta function. In particular, there will be no zeros with real part greater than or equal to 1. However, if 0<a<1 and a≠1/2, then there are zeros of Hurwitz's zeta function in the strip 1
Rational values
The Hurwitz zeta function occurs in a number of striking identities at rational values.Given by {{Citation |first1=Djurdje |last1=Cvijović |name-list-style=amp |first2=Jacek |last2=Klinowski |title=Values of the Legendre chi and Hurwitz zeta functions at rational arguments |journal=Mathematics of Computation |volume=68 |issue=228 |year=1999 |pages=1623–1630 |doi=10.1090/S0025-5718-99-01091-1|bibcode=1999MaCom..68.1623C |doi-access=free }} In particular, values in terms of the Euler polynomials :
:
(-1)^n \frac{4(2n-1)!}{(2\pi q)^{2n}}
\sum_{k=1}^q \zeta\left(2n,\frac{2k-1}{2q}\right)
\cos \frac{(2k-1)\pi p}{q}
and
:
(-1)^n \frac{4(2n)!}{(2\pi q)^{2n+1}}
\sum_{k=1}^q \zeta\left(2n+1,\frac{2k-1}{2q}\right)
\sin \frac{(2k-1)\pi p}{q}
One also has
:
2(2q)^{s-1} \sum_{k=1}^q \left[
C_s\left(\frac{k}{q}\right) \cos \left(\frac{(2p-1)\pi k}{q}\right) +
S_s\left(\frac{k}{q}\right) \sin \left(\frac{(2p-1)\pi k}{q}\right)
\right]
which holds for . Here, the and are defined by means of the Legendre chi function as
:
and
:
For integer values of ν, these may be expressed in terms of the Euler polynomials. These relations may be derived by employing the functional equation together with Hurwitz's formula, given above.
Applications
Hurwitz's zeta function occurs in a variety of disciplines. Most commonly, it occurs in number theory, where its theory is the deepest and most developed. However, it also occurs in the study of fractals and dynamical systems. In applied statistics, it occurs in Zipf's law and the Zipf–Mandelbrot law. In particle physics, it occurs in a formula by Julian Schwinger,{{Citation |last=Schwinger |first=J. |title=On gauge invariance and vacuum polarization |journal=Physical Review |volume=82 |issue=5 |year=1951 |pages=664–679 |doi=10.1103/PhysRev.82.664 |bibcode=1951PhRv...82..664S}} giving an exact result for the pair production rate of a Dirac electron in a uniform electric field.
Special cases and generalizations
The Hurwitz zeta function with a positive integer m is related to the polygamma function:
:
The Barnes zeta function generalizes the Hurwitz zeta function.
The Lerch transcendent generalizes the Hurwitz zeta:
:
\frac { z^k} {(k+q)^s}
and thus
:
: where
:
Notes
References
- {{dlmf|id=25.11|first=T. M. |last=Apostol}}
- See chapter 12 of {{Apostol IANT}}
- Milton Abramowitz and Irene A. Stegun, Handbook of Mathematical Functions, (1964) Dover Publications, New York. {{ISBN|0-486-61272-4}}. (See Paragraph 6.4.10 for relationship to polygamma function.)
- {{cite book | last=Davenport | first=Harold | author-link=Harold Davenport | title=Multiplicative number theory | publisher=Markham | series=Lectures in advanced mathematics | volume=1 | location=Chicago | year=1967 | zbl=0159.06303 }}
- {{cite journal
|first1=Jeff
|last1=Miller
|first2=Victor S.
|last2=Adamchik
|title= Derivatives of the Hurwitz Zeta Function for Rational Arguments
|journal= Journal of Computational and Applied Mathematics
|volume=100
|issue=2
|year=1998
|pages=201–206
|doi=10.1016/S0377-0427(98)00193-9
|doi-access=free
}}
- {{cite book
|title=A Course Of Modern Analysis
|title-link=A Course of Modern Analysis
|author-last1=Whittaker
|author-first1=E. T.
|author-link1=Edmund Taylor Whittaker
|author-last2=Watson
|author-first2=G. N.
|author-link2=George Neville Watson
|date=1927
|edition=4th
|publisher=Cambridge University Press
|publication-place=Cambridge, UK
}}
External links
- {{mathworld|urlname=HurwitzZetaFunction|title=Hurwitz Zeta Function|author=Jonathan Sondow and Eric W. Weisstein}}