KIF1C
{{Short description|Protein-coding gene in the species Homo sapiens}}
{{cs1 config|name-list-style=vanc|display-authors=6}}
{{Use dmy dates|date=August 2022}}
{{Infobox_gene}}
Kinesin-like protein KIF1C is a protein that in humans is encoded by the KIF1C gene.{{cite journal | vauthors = Dorner C, Ciossek T, Müller S, Møller PH, Ullrich A, Lammers R | title = Characterization of KIF1C, a new kinesin-like protein involved in vesicle transport from the Golgi apparatus to the endoplasmic reticulum | journal = The Journal of Biological Chemistry | volume = 273 | issue = 32 | pages = 20267–75 | date = August 1998 | pmid = 9685376 | doi = 10.1074/jbc.273.32.20267 | doi-access = free }}{{cite web | title = Entrez Gene: KIF1C kinesin family member 1C| url = https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=10749}}
Kif1C is a fast, plus-end directed microtubule motor.{{cite journal | vauthors = Rogers KR, Weiss S, Crevel I, Brophy PJ, Geeves M, Cross R | title = KIF1D is a fast non-processive kinesin that demonstrates novel K-loop-dependent mechanochemistry | journal = The EMBO Journal | volume = 20 | issue = 18 | pages = 5101–13 | date = September 2001 | pmid = 11566875 | pmc = 125638 | doi = 10.1093/emboj/20.18.5101 }} It takes processive 8nm steps along microtubules and can generate forces of up to 5 pN.{{cite journal |last1=Siddiqui |first1=Nida |last2=Roth |first2=Daniel |last3=Toleikis |first3=Algirdas |last4=Zwetsloot |first4=Alexander J. |last5=Cross |first5=Robert A. |last6=Straube |first6=Anne |title=Force generation of KIF1C is impaired by pathogenic mutations |journal=Current Biology |date=September 2022 |volume=32 |issue=17 |pages=3862–3870.e6 |doi=10.1016/j.cub.2022.07.029|pmid=35961316 |pmc=9631238 |bibcode=2022CBio...32E3862S }} Kif1C transports α5β1-integrins in human cells.{{cite journal | vauthors = Theisen U, Straube E, Straube A | title = Directional persistence of migrating cells requires Kif1C-mediated stabilization of trailing adhesions | journal = Developmental Cell | volume = 23 | issue = 6 | pages = 1153–66 | date = December 2012 | pmid = 23237952 | doi = 10.1016/j.devcel.2012.11.005 | doi-access = free }} Kif1C has been shown to be non-essential in mouse with other proteins able to perform the same function.{{cite journal | vauthors = Nakajima K, Takei Y, Tanaka Y, Nakagawa T, Nakata T, Noda Y, Setou M, Hirokawa N | title = Molecular motor KIF1C is not essential for mouse survival and motor-dependent retrograde Golgi apparatus-to-endoplasmic reticulum transport | journal = Molecular and Cellular Biology | volume = 22 | issue = 3 | pages = 866–73 | date = February 2002 | pmid = 11784862 | pmc = 133549 | doi = 10.1128/MCB.22.3.866-873.2002 }} However, mutations in KIF1C lead to spastic paraplegia and cerebellar dysfunction in humans.{{cite journal|vauthors=Caballero Oteyza A, Battaloğlu E, Ocek L, Lindig T, Reichbauer J, Rebelo AP, Gonzalez MA, Zorlu Y, Ozes B, Timmann D, Bender B, Woehlke G, Züchner S, Schöls L, Schüle R|date=June 2014|title=Motor protein mutations cause a new form of hereditary spastic paraplegia|journal=Neurology|volume=82|issue=22|pages=2007–16|doi=10.1212/WNL.0000000000000479|pmc=4105256|pmid=24808017}}{{cite journal | vauthors = Dor T, Cinnamon Y, Raymond L, Shaag A, Bouslam N, Bouhouche A, Gaussen M, Meyer V, Durr A, Brice A, Benomar A, Stevanin G, Schuelke M, Edvardson S | title = KIF1C mutations in two families with hereditary spastic paraparesis and cerebellar dysfunction | journal = Journal of Medical Genetics | volume = 51 | issue = 2 | pages = 137–42 | date = February 2014 | pmid = 24319291 | doi = 10.1136/jmedgenet-2013-102012 | s2cid = 24214406 }}{{cite journal | vauthors = Yücel-Yılmaz D, Yücesan E, Yalnızoğlu D, Oğuz KK, Sağıroğlu MŞ, Özbek U, Serdaroğlu E, Bilgiç B, Erdem S, İşeri SA, Hanağası H, Gürvit H, Özgül RK, Dursun A | title = Clinical phenotype of hereditary spastic paraplegia due to KIF1C gene mutations across life span | journal = Brain & Development | volume = 40 | issue = 6 | pages = 458–464 | date = June 2018 | pmid = 29544888 | doi = 10.1016/j.braindev.2018.02.013 | s2cid = 3892411 }}{{cite journal | vauthors = Marchionni E, Méneret A, Keren B, Melki J, Denier C, Durr A, Apartis E, Boespflug-Tanguy O, Mochel F | title = KIF1C Variants Are Associated with Hypomyelination, Ataxia, Tremor, and Dystonia in Fraternal Twins | journal = Tremor and Other Hyperkinetic Movements | volume = 9 | date = 2019 | pmid = 31413903 | doi = 10.7916/tohm.v0.641 | doi-broken-date = 1 January 2025 | pmc = 6692767 }} These mutations usually result in a total loss of the protein or (partial) loss of function, such as significant lower force output.{{cite journal |last1=Siddiqui |first1=Nida |last2=Roth |first2=Daniel |last3=Toleikis |first3=Algirdas |last4=Zwetsloot |first4=Alexander J. |last5=Cross |first5=Robert A. |last6=Straube |first6=Anne |title=Force generation of KIF1C is impaired by pathogenic mutations |journal=Current Biology |date=September 2022 |volume=32 |issue=17 |pages=3862–3870.e6 |doi=10.1016/j.cub.2022.07.029|pmid=35961316 |pmc=9631238 |bibcode=2022CBio...32E3862S }}
Interactions
KIF1C has been shown to interact with PTPN21 and YWHAG.{{cite journal | vauthors = Dorner C, Ullrich A, Häring HU, Lammers R | title = The kinesin-like motor protein KIF1C occurs in intact cells as a dimer and associates with proteins of the 14-3-3 family | journal = The Journal of Biological Chemistry | volume = 274 | issue = 47 | pages = 33654–60 | date = November 1999 | pmid = 10559254 | doi = 10.1074/jbc.274.47.33654 | doi-access = free }} KIF1C is a dimeric molecule that is held in an autoinhibited state by interaction of its stalk with the microtubule binding interface of the motor domain. Upon binding of PTPN21 or the cargo adapter HOOK3 to the KIF1C stalk, the motor domain is released, engages with microtubules and commences transport.{{cite journal | vauthors = Siddiqui N, Zwetsloot AJ, Bachmann A, Roth D, Hussain H, Brandt J, Kaverina I, Straube A | title = PTPN21 and Hook3 relieve KIF1C autoinhibition and activate intracellular transport | journal = Nature Communications | volume = 10 | issue = 1 | pages = 2693 | date = June 2019 | pmid = 31217419 | pmc = 6584639 | doi = 10.1038/s41467-019-10644-9 | bibcode = 2019NatCo..10.2693S }}
References
{{reflist}}
Further reading
{{refbegin | 2}}
- {{cite journal | vauthors = Ishikawa K, Nagase T, Suyama M, Miyajima N, Tanaka A, Kotani H, Nomura N, Ohara O | title = Prediction of the coding sequences of unidentified human genes. X. The complete sequences of 100 new cDNA clones from brain which can code for large proteins in vitro | journal = DNA Research | volume = 5 | issue = 3 | pages = 169–76 | date = June 1998 | pmid = 9734811 | doi = 10.1093/dnares/5.3.169 | doi-access = free }}
- {{cite journal | vauthors = Dorner C, Ullrich A, Häring HU, Lammers R | title = The kinesin-like motor protein KIF1C occurs in intact cells as a dimer and associates with proteins of the 14-3-3 family | journal = The Journal of Biological Chemistry | volume = 274 | issue = 47 | pages = 33654–60 | date = November 1999 | pmid = 10559254 | doi = 10.1074/jbc.274.47.33654 | doi-access = free }}
- {{cite journal | vauthors = Rual JF, Venkatesan K, Hao T, Hirozane-Kishikawa T, Dricot A, Li N, Berriz GF, Gibbons FD, Dreze M, Ayivi-Guedehoussou N, Klitgord N, Simon C, Boxem M, Milstein S, Rosenberg J, Goldberg DS, Zhang LV, Wong SL, Franklin G, Li S, Albala JS, Lim J, Fraughton C, Llamosas E, Cevik S, Bex C, Lamesch P, Sikorski RS, Vandenhaute J, Zoghbi HY, Smolyar A, Bosak S, Sequerra R, Doucette-Stamm L, Cusick ME, Hill DE, Roth FP, Vidal M | title = Towards a proteome-scale map of the human protein-protein interaction network | journal = Nature | volume = 437 | issue = 7062 | pages = 1173–8 | date = October 2005 | pmid = 16189514 | doi = 10.1038/nature04209 | bibcode = 2005Natur.437.1173R | s2cid = 4427026 }}
- {{cite journal | vauthors = Kopp P, Lammers R, Aepfelbacher M, Woehlke G, Rudel T, Machuy N, Steffen W, Linder S | title = The kinesin KIF1C and microtubule plus ends regulate podosome dynamics in macrophages | journal = Molecular Biology of the Cell | volume = 17 | issue = 6 | pages = 2811–23 | date = June 2006 | pmid = 16554367 | pmc = 1474789 | doi = 10.1091/mbc.E05-11-1010 }}
- {{cite journal | vauthors = Beausoleil SA, Villén J, Gerber SA, Rush J, Gygi SP | title = A probability-based approach for high-throughput protein phosphorylation analysis and site localization | journal = Nature Biotechnology | volume = 24 | issue = 10 | pages = 1285–92 | date = October 2006 | pmid = 16964243 | doi = 10.1038/nbt1240 | s2cid = 14294292 }}
- {{cite journal | vauthors = Olsen JV, Blagoev B, Gnad F, Macek B, Kumar C, Mortensen P, Mann M | title = Global, in vivo, and site-specific phosphorylation dynamics in signaling networks | journal = Cell | volume = 127 | issue = 3 | pages = 635–48 | date = November 2006 | pmid = 17081983 | doi = 10.1016/j.cell.2006.09.026 | s2cid = 7827573 | doi-access = free }}
{{refend}}
External links
- {{PDBe-KB2|O43896|Kinesin-like protein KIF1C}}
{{PDB Gallery|geneid=10749}}
{{gene-17-stub}}{{Cytoskeletal proteins}}