Klincewicz method

{{Short description|Thermodynamic model}}

Image:Gruppenbeitragsmethodenprinzip.svg

In thermodynamic modelling, the Klincewicz method is a predictive method based both on group contributions and on a correlation with some basic molecular properties. The method estimates the critical temperature, the critical pressure, and the critical volume of pure components. It is named after Karen Klincewicz Gleason who developed it in 1984 in collaboration with Robert C. Reid.{{cite journal | last=Klincewicz | first=K. M. |author-link=Karen Gleason| last2=Reid | first2=R. C. | title=Estimation of critical properties with group contribution methods | journal=AIChE Journal | publisher=Wiley | volume=30 | issue=1 | year=1984 | issn=0001-1541 | doi=10.1002/aic.690300119 | pages=137–142}}

Model description

As a group contribution method the Klincewicz method correlates some structural information of a chemical molecule with the critical data. The used structural information are small functional groups which are assumed to have no interactions. This assumption makes it possible to calculate the thermodynamic properties directly from the sums of the group contributions. The correlation method does not even use these functional groups, only the molecular weight and the number of atoms are used as molecular descriptors.

The prediction of the critical temperature relies on the knowledge of the normal boiling point because the method only predicts the relation of the normal boiling point and the critical temperature and not directly the critical temperature. The critical volume and pressure however are directly predicted.

=Model quality=

The quality of the Klincewicz method is not superior to older methods, especially the method of AmbroseAmbrose D., "Correlation and Estimation of Vapour-Liquid Critical Properties. I. Critical Temperatures of Organic Compounds", Nat. Phys. Lab. Rep. Chem., Rep. No. NPL Rep. Chem. 92, 1-35, 1978 gives somewhat better results as stated by the original authors and by Reid et al.Reid R.C., Prausnitz J.M., Poling B.E., "The Properties of Gases & Liquids", Monograph, McGraw-Hill, 4 Ed., 1-742, 1987 The advantage of the Klincewicz method is that it is less complex.

The quality and complexity of the Klincewicz method is comparable to the Lydersen methodLydersen A.L., "Estimation of Critical Properties of Organic Compounds", University of Wisconsin College Engineering, Eng. Exp. Stn. Rep. 3, Madison, Wisconsin, 1955 from 1955 which has been used widely in chemical engineering.

The aspect where the Klincewicz method is unique and useful are the alternative equations where only very basic molecular data like the molecular weight and the atom count are used.

=Deviation diagrams=

The diagrams show estimated critical data of hydrocarbons together with experimental data.Dortmund Data Bank An estimation would be perfect if all data points would lie directly on the diagonal line. Only the simple correlation of the Klincewicz method with the molecular weight and the atom count have been used in this example.

Image:TCKlincewicz.png | Critical temperatures

Image:PCKlincewicz.png | Critical pressures

Image:VCKlincewicz.png | Critical volumes

Equations

Klincewicz published two sets of equations.Klincewicz, K. M., "Prediction of Critical Temperatures, Pressures, and Volumes of Organic Compounds from Molecular Structure," S.M.Thesis, Massachusetts Institute of Technology, Cambridge, Massachusetts, 1982 The first uses contributions of 35 different groups. These group contribution based equations are giving somewhat better results than the very simple equations based only on correlations with the molecular weight and the atom count.

=Group-contribution-based equations=

T_c \, = \, 45.40 - 0.77 * MW + 1.55 * T_b+\sum_{j=1}^{35} n_j \Delta_j

(MW/P_c)^{1/2} \, = \, 0.348 + 0.0159 * MW + \sum_{j=1}^{35} n_j \Delta_j

V_c \, = \, 25.2 + 2.80 * MW + \sum_{j=1}^{35} n_j \Delta_j

= Equations based on correlation with molecular weight and atom count only =


T_c \, = \, 50.2 - 0.16 * MW + 1.41 * T_b

(MW/P_c)^{1/2} \, = \, 0.335 + 0.009 * MW + 0.019A

V_c \, = \, 20.1 + 0.88 * MW + 13.4 * A

with

border="0"

| MW:

| Molecular weight in g/mol

Tb:

| Normal boiling point in K

A:

| Number of atoms

Group contributions

class="wikitable" style="text-align: right;"

!

! colspan="3" style="text-align: center;"| Δj Values for

|bgcolor="#fff0f0" width="25%" style="text-align: center;"| Tc

|bgcolor="#fff0f0" width="25%" style="text-align: center;"| Pc

|bgcolor="#fff0f0" width="25%" style="text-align: center;"| Vc

style="text-align: left;"| -CH3

| -2.433

| 0.026

| 16.2

style="text-align: left;"| -CH2-

| 0.353

| -0.015

| 16.1

style="text-align: left;"| -CH2- (Ring)

| 4.253

| -0.046

| 8.2

style="text-align: left;"| >CH-

| 6.266

| -0.083

| 12.1

style="text-align: left;"| >CH- (Ring)

| -0.335

| -0.027

| 7.4

style="text-align: left;"| >C<

| 16.416

| -0.136

| 8.95

style="text-align: left;"| >C< (Ring)

| 12.435

| -0.111

| -6.6

style="text-align: left;"| =CH2

| -0.991

| -0.015

| 13.9

style="text-align: left;"| =CH-

| 3.786

| -0.050

| 9.8

style="text-align: left;"| =CH- (Ring)

| 3.373

| -0.066

| 5.1

style="text-align: left;"| >C=;=C=

| 7.169

| -0.067

| 2.7

style="text-align: left;"| >C= (Ring)

| 5.623

| -0.089

| 0.2

style="text-align: left;"| ≡CH

| -4.561

| -0.056

| 7.5

style="text-align: left;"| ≡C-

| 7.341

| -0.112

| 3.0

style="text-align: left;"| -OH

| -28.930

| -0.190

| -24.0

style="text-align: left;"| -O-

| 5.389

| -0.143

| -26.1

style="text-align: left;"| -O- (Ring)

| 7.127

| -0.116

| -36.6

style="text-align: left;"| >CO;-CHO

| 4.332

| -0.196

| -6.7

style="text-align: left;"| -COOH

| -25.085

| -0.251

| -37.0

style="text-align: left;"| -CO-O-

| 8.890

| -0.277

| -28.2

style="text-align: left;"| -NH2

| -4.153

| -0.127

| -0.1

style="text-align: left;"| >NH

| 2.005

| -0.180

| 53.7

style="text-align: left;"| >NH (Ring)

| 2.773

| -0.172

| -8.0

style="text-align: left;"| >N-

| 12.253

| -0.163

| -0.7

style="text-align: left;"| =N- (Ring)

| 8.239

| -0.104

| -18.4

style="text-align: left;"| -CN

| -10.381

| -0.064

| 12.0

style="text-align: left;"| -SH

| 28.529

| -0.303

| -27.7

style="text-align: left;"| -S-

| 23.905

| -0.311

| -27.3

style="text-align: left;"| -S- (Ring)

| 31.537

| -0.208

| -61.9

style="text-align: left;"| -F

| 5.191

| -0.067

| -34.1

style="text-align: left;"| -Cl

| 18.353

| -0.244

| -47.4

style="text-align: left;"| -Br

| 53.456

| -0.692

| -148.1

style="text-align: left;"| -I

| 94.186

| -1.051

| -270.6

style="text-align: left;"| -XCX (X = halogen)

| -1.770

| 0.032

| 0.8

style="text-align: left;"| -NO2

| 11.709

| -0.325

| -39.2

The group XCX is used to take the pairwise interaction of halogens connected to a single carbon into account. Its contribution has to be added once for two halogens but three times for three halogens (interactions between the halogens 1 and 2, 1 and 3, and 2 and 3).

Example calculations

=Example calculation for acetone with group contributions=

class="wikitable" style="text-align: center;"

!

! colspan="2"| -CH3

! colspan="2"| >C=O (nonring)

!

!

!

bgcolor="#fff0f0"

| Property

| No. of groups

| Group value

| No. of groups

| Group value

| \sum n_j\Delta_j

| Estimated Value

| Unit

style="text-align: left;"| Tc

| 2

| -2.433

| 1

| 4.332

| -0.534

| 510.4819*

| K

style="text-align: left;"| Pc

| 2

| 0.026

| 1

| -0.196

| -0.144

| 45.69

| bar

style="text-align: left;"| Vc

| 2

| 16.2

| 1

| -6.7

| 25.7

| 213.524

| cm3/mol

*used normal boiling point Tb= 329.250 K

=Example calculation for acetone with molecular weight and atom count only=

Used molecular weight: 58.080 g/mol

Used atom count: 10

class="wikitable"
bgcolor="#fff0f0"

| Property

| Estimated Value

| Unit

Tc

| 505.1497

| K

Pc

| 52.9098

| bar

Vc

| 205.2

| cm3/mol

For comparison, experimental values for Tc, Pc and Vc are 508.1 K, 47.0 bar and 209 cm3/mol, respectively.

References

{{reflist}}

{{DEFAULTSORT:Klincewicz Method}}

Category:Thermodynamic models