Lydersen method

{{Short description|Thermodynamic model}}

The Lydersen method is a group contribution method for the estimation of critical properties temperature (Tc), pressure (Pc) and volume (Vc). The method is named after Aksel Lydersen who published it in 1955.{{cite journal |last=Lydersen |first=a.L. |title=Estimation of Critical Properties of Organic Compounds |journal=Engineering Experiment Station Report |location=Madison, Wisconsin |publisher=University of Wisconsin College Engineering |volume=3}} The Lydersen method is the prototype for and ancestor of many new models like Joback,{{cite journal | last1=Joback | first1=K.G. | last2=Reid | first2=R.C. | title=Estimation of pure-component properties from group-contributions | journal=Chemical Engineering Communications | publisher=Informa UK Limited | volume=57 | issue=1–6 | year=1987 | issn=0098-6445 | doi=10.1080/00986448708960487 | pages=233–243}} Klincewicz,{{cite journal | last1=Klincewicz | first1=K. M. | last2=Reid | first2=R. C. | title=Estimation of critical properties with group contribution methods | journal=AIChE Journal | publisher=Wiley | volume=30 | issue=1 | year=1984 | issn=0001-1541 | doi=10.1002/aic.690300119 | pages=137–142| bibcode=1984AIChE..30..137K }}

Ambrose,{{cite book|last=Ambrose|first=D.|title=Correlation and Estimation of Vapour-Liquid Critical Properties. I. Critical Temperatures of Organic Compounds|series= National Physical Laboratory Reports Chemistry |volume=92|page=1-35|year=1978}}

Gani-Constantinou{{cite journal | last1=Constantinou | first1=Leonidas | last2=Gani | first2=Rafiqul | title=New group contribution method for estimating properties of pure compounds | journal=AIChE Journal | publisher=Wiley | volume=40 | issue=10 | year=1994 | issn=0001-1541 | doi=10.1002/aic.690401011 | pages=1697–1710| bibcode=1994AIChE..40.1697C }} and others.

The Lydersen method is based in case of the critical temperature on the Guldberg rule which establishes a relation between the normal boiling point and the critical temperature.

Equations

= Critical temperature =

:T_c=\frac{T_b}{0.567+\sum G_i-\left(\sum G_i\right)^2}

Guldberg has found that a rough estimate of the normal boiling point Tb, when expressed in kelvins (i.e., as an absolute temperature), is approximately two-thirds of the critical temperature Tc. Lydersen uses this basic idea but calculates more accurate values.

= Critical pressure =

:P_c=\frac{M}{\left(0.34+\sum G_i\right)^2}

= Critical volume =

:V_c\,=\,40+\sum G_i

M is the molar mass and Gi are the group contributions (different for all three properties) for functional groups of a molecule.

Group contributions

cellpadding="4" rules="all" style="margin: 1em 0em; background: #ffffff; border: 2px solid #aaa;"
align="center" bgcolor="#f0f0f0"

!Group

!Gi (Tc)

!Gi (Pc)

!Gi (Vc)

!Group

!Gi (Tc)

!Gi (Pc)

!Gi (Vc)

align="center"

| bgcolor="#f0f0f0"

CH3,-CH2-0.0200.22755.0

| bgcolor="#f0f0f0" |>CH

0.0120.21051.0
align="center"

| bgcolor="#f0f0f0"

C< |
|0,21041.0

| bgcolor="#f0f0f0" |=CH2,#CH

0.0180,19845.0
align="center"

| bgcolor="#f0f0f0" |=C<,=C= |

|0.19836.0

| bgcolor="#f0f0f0" |=C-H,#C-

0.0050.15336.0
align="center"

| bgcolor="#f0f0f0"

CH2-(Ring)0.0130.18444.5

| bgcolor="#f0f0f0" |>CH-(Ring)

0.0120.19246.0
align="center"

| bgcolor="#f0f0f0" |>C<(Ring) |

0.0070.15431.0

| bgcolor="#f0f0f0" |=CH-,=C<,=C=(Ring)

0.0110.15437.0
align="center"

| bgcolor="#f0f0f0"

F0.0180.22418.0

| bgcolor="#f0f0f0"

Cl0.0170.32049.0
align="center"

| bgcolor="#f0f0f0"

Br0.0100.50070.0

| bgcolor="#f0f0f0"

I0.0120.83095.0
align="center"

| bgcolor="#f0f0f0"

OH0.0820.06018.0

| bgcolor="#f0f0f0"

OH(Aromat)0.031|
0.0203.0
align="center"

| bgcolor="#f0f0f0"

O-0.0210.16020.0

| bgcolor="#f0f0f0"

O-(Ring)0.0140.1208.0
align="center"

| bgcolor="#f0f0f0" |>C=O

0.0400.29060.0

| bgcolor="#f0f0f0" |>C=O(Ring)

0.0330.20050.0
align="center"

| bgcolor="#f0f0f0" |HC=O-

0.0480.33073.0

| bgcolor="#f0f0f0"

COOH0.0850.40080.0
align="center"

| bgcolor="#f0f0f0"

COO-0.0470.47080.0

| bgcolor="#f0f0f0"

NH20.0310.09528.0
align="center"

| bgcolor="#f0f0f0" |>NH

0.0310.13537.0

| bgcolor="#f0f0f0" |>NH(Ring)

0.0240.09027.0
align="center"

| bgcolor="#f0f0f0" |>N

0.0140.17042.0

| bgcolor="#f0f0f0" |>N-(Ring)

0.0070.13032.0
align="center"

| bgcolor="#f0f0f0"

CN0.0600.36080.0

| bgcolor="#f0f0f0"

NO20.0550.42078.0
align="center"

| bgcolor="#f0f0f0"

SH,-S-0.0150.27055.0

| bgcolor="#f0f0f0"

S-(Ring)0.0080.24045.0
align="center"

| bgcolor="#f0f0f0" |=S

0.0030.24047.0

| bgcolor="#f0f0f0" |>Si<

0.0300.540|
align="center"

| bgcolor="#f0f0f0"

B<0.030|
bgcolor="#f0f0f0" |

Example calculation

Group assignment for Acetone

Acetone is fragmented in two different groups, one carbonyl group and two methyl groups. For the critical volume the following calculation results:

Vc = 40 + 60.0 + 2 * 55.0 = 210 cm3

In the literature (such as in the Dortmund Data Bank) the values 215.90 cm3,{{cite journal | last1=Campbell | first1=A. N. | last2=Chatterjee | first2=R. M. | title=The critical constants and orthobaric densities of acetone, chloroform, benzene, and carbon tetrachloride | journal=Canadian Journal of Chemistry | publisher=Canadian Science Publishing | volume=47 | issue=20 | date=1969-10-15 | issn=0008-4042 | doi=10.1139/v69-646 | pages=3893–3898| doi-access=free }} 230.5 cm3 {{cite journal|last1=Herz |first1=W.|last2=Neukirch |first2=E.|title=Zur Kenntnis kritischer Grössen |journal= Zeitschrift für Physikalische Chemie|volume= 104|page= S.433-450|year=1923|doi=10.1515/zpch-1923-10429 |s2cid=99833350 }} and 209.0 cm3 {{cite journal | last1=Kobe | first1=Kenneth A. | last2=Crawford | first2=Horace R. | last3=Stephenson | first3=Robert W. | title=Industrial Design Data—Critical Properties and Vapor Presesures of Some Ketones | journal=Industrial & Engineering Chemistry | publisher=American Chemical Society (ACS) | volume=47 | issue=9 | year=1955 | issn=0019-7866 | doi=10.1021/ie50549a025 | pages=1767–1772}} are published.

References