Lydersen method
{{Short description|Thermodynamic model}}
The Lydersen method is a group contribution method for the estimation of critical properties temperature (Tc), pressure (Pc) and volume (Vc). The method is named after Aksel Lydersen who published it in 1955.{{cite journal |last=Lydersen |first=a.L. |title=Estimation of Critical Properties of Organic Compounds |journal=Engineering Experiment Station Report |location=Madison, Wisconsin |publisher=University of Wisconsin College Engineering |volume=3}} The Lydersen method is the prototype for and ancestor of many new models like Joback,{{cite journal | last1=Joback | first1=K.G. | last2=Reid | first2=R.C. | title=Estimation of pure-component properties from group-contributions | journal=Chemical Engineering Communications | publisher=Informa UK Limited | volume=57 | issue=1–6 | year=1987 | issn=0098-6445 | doi=10.1080/00986448708960487 | pages=233–243}} Klincewicz,{{cite journal | last1=Klincewicz | first1=K. M. | last2=Reid | first2=R. C. | title=Estimation of critical properties with group contribution methods | journal=AIChE Journal | publisher=Wiley | volume=30 | issue=1 | year=1984 | issn=0001-1541 | doi=10.1002/aic.690300119 | pages=137–142| bibcode=1984AIChE..30..137K }}
The Lydersen method is based in case of the critical temperature on the Guldberg rule which establishes a relation between the normal boiling point and the critical temperature.
Equations
= Critical temperature =
:
Guldberg has found that a rough estimate of the normal boiling point Tb, when expressed in kelvins (i.e., as an absolute temperature), is approximately two-thirds of the critical temperature Tc. Lydersen uses this basic idea but calculates more accurate values.
= Critical pressure =
:
= Critical volume =
:
M is the molar mass and Gi are the group contributions (different for all three properties) for functional groups of a molecule.
Group contributions
cellpadding="4" rules="all" style="margin: 1em 0em; background: #ffffff; border: 2px solid #aaa;" | ||||||
align="center" bgcolor="#f0f0f0"
!Group !Gi (Tc) !Gi (Pc) !Gi (Vc) !Group !Gi (Tc) !Gi (Pc) !Gi (Vc) | ||||||
align="center"
| bgcolor="#f0f0f0" | ||||||
CH3,-CH2- | 0.020 | 0.227 | 55.0
| bgcolor="#f0f0f0" |>CH | 0.012 | 0.210 | 51.0 |
align="center"
| bgcolor="#f0f0f0" | ||||||
C< | | ||||||
|0,210 | 41.0
| bgcolor="#f0f0f0" |=CH2,#CH | 0.018 | 0,198 | 45.0 | ||
align="center"
| bgcolor="#f0f0f0" |=C<,=C= | | ||||||
|0.198 | 36.0
| bgcolor="#f0f0f0" |=C-H,#C- | 0.005 | 0.153 | 36.0 | ||
align="center"
| bgcolor="#f0f0f0" | ||||||
CH2-(Ring) | 0.013 | 0.184 | 44.5
| bgcolor="#f0f0f0" |>CH-(Ring) | 0.012 | 0.192 | 46.0 |
align="center"
| bgcolor="#f0f0f0" |>C<(Ring) | | ||||||
0.007 | 0.154 | 31.0
| bgcolor="#f0f0f0" |=CH-,=C<,=C=(Ring) | 0.011 | 0.154 | 37.0 | |
align="center"
| bgcolor="#f0f0f0" | ||||||
F | 0.018 | 0.224 | 18.0
| bgcolor="#f0f0f0" | |||
Cl | 0.017 | 0.320 | 49.0 | |||
align="center"
| bgcolor="#f0f0f0" | ||||||
Br | 0.010 | 0.500 | 70.0
| bgcolor="#f0f0f0" | |||
I | 0.012 | 0.830 | 95.0 | |||
align="center"
| bgcolor="#f0f0f0" | ||||||
OH | 0.082 | 0.060 | 18.0
| bgcolor="#f0f0f0" | |||
OH(Aromat) | 0.031| | |||||
0.020 | 3.0 | |||||
align="center"
| bgcolor="#f0f0f0" | ||||||
O- | 0.021 | 0.160 | 20.0
| bgcolor="#f0f0f0" | |||
O-(Ring) | 0.014 | 0.120 | 8.0 | |||
align="center"
| bgcolor="#f0f0f0" |>C=O | 0.040 | 0.290 | 60.0
| bgcolor="#f0f0f0" |>C=O(Ring) | 0.033 | 0.200 | 50.0 |
align="center"
| bgcolor="#f0f0f0" |HC=O- | 0.048 | 0.330 | 73.0
| bgcolor="#f0f0f0" | |||
COOH | 0.085 | 0.400 | 80.0 | |||
align="center"
| bgcolor="#f0f0f0" | ||||||
COO- | 0.047 | 0.470 | 80.0
| bgcolor="#f0f0f0" | |||
NH2 | 0.031 | 0.095 | 28.0 | |||
align="center"
| bgcolor="#f0f0f0" |>NH | 0.031 | 0.135 | 37.0
| bgcolor="#f0f0f0" |>NH(Ring) | 0.024 | 0.090 | 27.0 |
align="center"
| bgcolor="#f0f0f0" |>N | 0.014 | 0.170 | 42.0
| bgcolor="#f0f0f0" |>N-(Ring) | 0.007 | 0.130 | 32.0 |
align="center"
| bgcolor="#f0f0f0" | ||||||
CN | 0.060 | 0.360 | 80.0
| bgcolor="#f0f0f0" | |||
NO2 | 0.055 | 0.420 | 78.0 | |||
align="center"
| bgcolor="#f0f0f0" | ||||||
SH,-S- | 0.015 | 0.270 | 55.0
| bgcolor="#f0f0f0" | |||
S-(Ring) | 0.008 | 0.240 | 45.0 | |||
align="center"
| bgcolor="#f0f0f0" |=S | 0.003 | 0.240 | 47.0
| bgcolor="#f0f0f0" |>Si< | 0.030 | 0.540| | |
align="center"
| bgcolor="#f0f0f0" | ||||||
B< | 0.030| | |||||
bgcolor="#f0f0f0" | |
Example calculation
Acetone is fragmented in two different groups, one carbonyl group and two methyl groups. For the critical volume the following calculation results:
Vc = 40 + 60.0 + 2 * 55.0 = 210 cm3
In the literature (such as in the Dortmund Data Bank) the values 215.90 cm3,{{cite journal | last1=Campbell | first1=A. N. | last2=Chatterjee | first2=R. M. | title=The critical constants and orthobaric densities of acetone, chloroform, benzene, and carbon tetrachloride | journal=Canadian Journal of Chemistry | publisher=Canadian Science Publishing | volume=47 | issue=20 | date=1969-10-15 | issn=0008-4042 | doi=10.1139/v69-646 | pages=3893–3898| doi-access=free }} 230.5 cm3 {{cite journal|last1=Herz |first1=W.|last2=Neukirch |first2=E.|title=Zur Kenntnis kritischer Grössen |journal= Zeitschrift für Physikalische Chemie|volume= 104|page= S.433-450|year=1923|doi=10.1515/zpch-1923-10429 |s2cid=99833350 }} and 209.0 cm3 {{cite journal | last1=Kobe | first1=Kenneth A. | last2=Crawford | first2=Horace R. | last3=Stephenson | first3=Robert W. | title=Industrial Design Data—Critical Properties and Vapor Presesures of Some Ketones | journal=Industrial & Engineering Chemistry | publisher=American Chemical Society (ACS) | volume=47 | issue=9 | year=1955 | issn=0019-7866 | doi=10.1021/ie50549a025 | pages=1767–1772}} are published.