Legendre transform (integral transform)

{{about|an integral transform using Legendre polynomials|the involution transform commonly used in classical mechanics and thermodynamics|Legendre transformation}}

In mathematics, Legendre transform is an integral transform named after the mathematician Adrien-Marie Legendre, which uses Legendre polynomials P_n(x) as kernels of the transform. Legendre transform is a special case of Jacobi transform.

The Legendre transform of a function f(x) is{{cite book |last1=Debnath |first1=Lokenath |author2=Dambaru Bhatta|title=Integral transforms and their applications. |date=2007 |publisher=Chapman & Hall/CRC |location=Boca Raton |isbn=9781482223576 |edition=2nd}}{{cite journal |last1=Churchill |first1=R. V. |title=The Operational Calculus of Legendre Transforms |journal=Journal of Mathematics and Physics |date=1954 |volume=33 |issue=1-4 |pages=165–178 |doi=10.1002/sapm1954331165|hdl=2027.42/113680 |hdl-access=free }}Churchill, R. V., and C. L. Dolph. "Inverse transforms of products of Legendre transforms." Proceedings of the American Mathematical Society 5.1 (1954): 93–100.

:\mathcal{J}_n\{f(x)\} = \tilde f(n) = \int_{-1}^1 P_n(x)\ f(x) \ dx

The inverse Legendre transform is given by

:\mathcal{J}_n^{-1}\{\tilde f(n)\} = f(x) = \sum_{n=0}^\infty \frac{2n+1}{2} \tilde f(n) P_n(x)

Associated Legendre transform

Associated Legendre transform is defined as

:\mathcal{J}_{n,m}\{f(x)\} = \tilde f(n,m) = \int_{-1}^1 (1-x^2)^{-m/2}P_n^m(x) \ f(x) \ dx

The inverse Legendre transform is given by

:\mathcal{J}_{n,m}^{-1}\{\tilde f(n,m)\} = f(x) = \sum_{n=0}^\infty \frac{2n+1}{2}\frac{(n-m)!}{(n+m)!} \tilde f(n,m)(1-x^2)^{m/2} P_n^m(x)

Some Legendre transform pairs

class="wikitable" align="center"

!f(x)\,

!\tilde f(n)\,

x^n \,

|\frac{2^{n+1} (n!)^2}{(2n+1)!}

e^{ax} \,

|\sqrt{\frac{2\pi}{a}}I_{n+1/2}(a)

e^{iax} \,

|\sqrt{\frac{2\pi}{a}}i^n J_{n+1/2}(a)

xf(x) \,

|\frac{1}{2n+1}[(n+1)\tilde f(n+1) + n \tilde f(n-1)]

(1-x^2)^{-1/2} \,

|\pi P_n^2(0)

[2(a-x)]^{-1} \,

|Q_n(a)

(1-2ax+a^2)^{-1/2}, \ |a|<1 \,

|2a^n (2n+1)^{-1}

(1-2ax+a^2)^{-3/2}, \ |a|<1 \,

|2a^n (1-a^2)^{-1}

\int_0^a \frac{t^{b-1} \, dt}{(1-2xt + t^2)^{1/2}}, \ |a|<1 \ b>0 \,

|\frac{2a^{n+b}}{(2n+1)(n+b)}

\frac{d}{dx}\left[(1-x^2)\frac{d}{dx} \right] f(x)\,

|-n(n+1)\tilde f(n)

\left\{\frac{d}{dx}\left[(1-x^2)\frac{d}{dx} \right]\right\}^k f(x)\,

|(-1)^k n^k (n+1)^k \tilde f(n)

\frac{f(x)}{4}-\frac{d}{dx}\left[(1-x^2)\frac{d}{dx} \right] f(x)\,

|\left(n+\frac{1}{2}\right)^2\tilde f(n)

\ln(1-x) \,

|\begin{cases}

2(\ln 2 -1) , & n= 0\\

-\frac{2}{n(n+1)} , & n>0

\end{cases}\,

f(x)*g(x)\,

|\tilde f(n)\tilde g(n)

\int_{-1}^x f(t) \, dt \,

|\begin{cases}

\tilde f(0)-\tilde f(1) , & n= 0\\

\frac{\tilde f(n-1) - \tilde f(n+1)}{2n+1} , & n>1

\end{cases}\,

\frac{d}{dx} g(x), \ g(x) = \int_{-1}^x f(t) \,dt

|g(1) - \int_{-1}^1g(x) \frac{d}{dx} P_n(x) \,dx

References