Legendre transform (integral transform)
{{about|an integral transform using Legendre polynomials|the involution transform commonly used in classical mechanics and thermodynamics|Legendre transformation}}
In mathematics, Legendre transform is an integral transform named after the mathematician Adrien-Marie Legendre, which uses Legendre polynomials as kernels of the transform. Legendre transform is a special case of Jacobi transform.
The Legendre transform of a function is{{cite book |last1=Debnath |first1=Lokenath |author2=Dambaru Bhatta|title=Integral transforms and their applications. |date=2007 |publisher=Chapman & Hall/CRC |location=Boca Raton |isbn=9781482223576 |edition=2nd}}{{cite journal |last1=Churchill |first1=R. V. |title=The Operational Calculus of Legendre Transforms |journal=Journal of Mathematics and Physics |date=1954 |volume=33 |issue=1-4 |pages=165–178 |doi=10.1002/sapm1954331165|hdl=2027.42/113680 |hdl-access=free }}Churchill, R. V., and C. L. Dolph. "Inverse transforms of products of Legendre transforms." Proceedings of the American Mathematical Society 5.1 (1954): 93–100.
:
The inverse Legendre transform is given by
:
Associated Legendre transform
Associated Legendre transform is defined as
:
The inverse Legendre transform is given by
:
Some Legendre transform pairs
class="wikitable" align="center"
! ! |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| 2(\ln 2 -1) , & n= 0\\ -\frac{2}{n(n+1)} , & n>0 \end{cases}\, |
| |
| \tilde f(0)-\tilde f(1) , & n= 0\\ \frac{\tilde f(n-1) - \tilde f(n+1)}{2n+1} , & n>1 \end{cases}\, |
| |